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The problem of the passage of a current in a two-temperature plasma (Te » Ti) is solved. The 
electric field strength E is assumed to be given and sufficiently large so that Coulomb colli
sions do not interfere with the free acceleration of most of the electrons. Ion-sound oscillations 
are excited in the plasma as a result of the current instability. The interaction between the elec
trons and ion-sound oscillations is considered in the quasilinear approximation. In this approxi
mation the electrons are scattered by the oscillations almost elastically with a frequency ...... v-3• 

Thus, during a period of time t <to~../ TeM/eE the current remains stationary and is equal to 
j ~ -e../ T e/M. Then, owing to heating of the electrons, runaway electrons appear and the cur
rent begins to grow. 

SEVERAL recent experimental papers report 
observation. of anomalously large resistance of 
plasma to electric current. [ 1- 51 The anomalous 
resistance occurs under conditions when the elec
tric field in the plasma exceeds a critical value 
Ecr ~ Te ln A/81renrh at which all electrons can 
be freely accelerated. The authors of these papers 
are unanimous in the opinion that the anomalous 
resistance is a consequence of the instability of the 
current. There is experimental evidence in favor 
of this hypothesis. fu some investigations[ 1• 21 in
tense microwave plasma noise was registered 
during the time of current flow. 

To explain the experiment it is necessary to 
develop a nonlinear theory of current instability. 
This is the subject of a paper by Field and Fried.[Sl 
It contains a numerical calculation of the initial 
stage of development of the current instability in 
a plasma situated in an electric field, and shows 
that as soon as the current velocity exceeds the 
velocity of the ion sound and ion-sound oscillations 
begin to build up, the anomalous resistance sets in. 
However, in our opinion, sight has been lost in 
this paper of several important features of the 
phenomenon. fu the present article we present in 
the quasilinear approximation an analytic solution 
of the problem of instability of a current in a 
plasma in a specified electric field. 

The initial system of equations is the same as 
in [SJ. We solve a very simple problem: in a uni
form plasma with Maxwellian particle velocity 
distribution, and with temperatures T i and T e 
( T e » T i) , there is a constant electric field E. 
Coulomb collisions are completely neglected. The 
external magnetic field is equal to zero, and the 

magnetic field of the current is negligibly small. 
Under these assumptions, the instability of the 
current is described by the system of equations 

(1) 

(2) 

- ( T•)'i> 
Cs- - . (3) 

'M, 

Here f(v, t) is the electron distribution function, 
<Pk the amplitude of the Fourier component of the 
disturbance of the potential, w and k the fre
quency wave vector, E the external electric field, 
and w~a = 47rne2/ma. In deriving (2) and (3) we 
have assumed that the electron velocity is much 
lower than their thermal velocity Ce = (2Te/m)1/ 2, 

and the ion temperature Ti is much lower than the 
average electron energy. fu (2) we have left out 
terms that take into account the change in the os
cillation energy as a result of nonlinear scattering 
of the waves by plasma particles and wave-wave 
scattering. The influence of these processes will 
be estimated after the solution is obtained. 

The oscillations determined by the dispersion 
relation (3) are ion-sound oscillations. From (2) 
and (3) it follows that the damping of the oscilla
tions by the ions gives rise to a critical velocity 
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v0 ~ 3(2Ti/M)1/ 2 below which the ion-sound is 
stable. 

A wave with given w and k is excited by reso
nant particles whose velocity in the direction of the 
wave vector is equal to the phase velocity of the 
wave, w = k · v. In (2) this is taken into account by 
the 6-function. Excitation or damping of the wave 
can be understood as being the summary effect of 
a large number of Cerenkov emission and absorp
tions acts of ion-sound plasmons by the resonant 
electrons. 

The change in the electron distribution function 
as a result of interaction with the ion-sound is de
scribed by (1). Since the maximum phase velocity 
of the ion-sound is cs, the resonant electrons 
moving with a velocity of the order of thermal ve
locity, emit (absorb) waves whose wave vector is 
orthogonal, accurate to a quantity cs/v, to the ve
locity of the particle v. The velocity increment 
!:lv is obviously parallel to the wave vector. There
fore the interaction between electrons and the ion
sound oscillations is a process in which the elec
tron energy is conserved in the zeroth approxima
tion in the parameter w /kv. 

Let us rewrite (1) in spherical coordinates 
(v, e, <;O). The z axis is chosen in the direction of 
the average electron velocity. We use the spheri
cal coordinates (k, 0', <;O') and when integrating 
with respect to k we measure the angle 8' from 
the same axis. We have 

at , e , ( Of sin 8 Of) 
- 1 -E cos8----
at m au u 88 

1 f) . ( &f &f ) = --~-sm8 A--B-
u3 sin 8 &8 &8 &u, 

+ _!___&_ ~ (n !!__- B &f \ . 
u2 &u u Du &8 J 

Here 

(4) 

(5) 

(6) 

(7) 

ke is the projection of the wave vector in the di
rection of the unit vector ne. Equation (4) can be 
readily derived by writing the right side of (1) in 
the form of the divergence of the flux j a 
= Daf3Bf/Bvf3 in spherical coordinates, and using 
the equality kv= k·v/v = w/v and the obvious 
symmetry of f with respect to the angle <P· 

Equation (2) in terms of the same variables is 
rewritten in the form 

n w3 M { ,. 1 &j v= .-- (!) ·--1\(w-kv)dv 
2 k2 mn u &u 

i ke Of } + J--1\(w-kv)dv . 
u au 

(8) 

If we compare the values of the coefficients A, 
B, and D we find that 

B ,.., Aw I k, D ,.., (w I k) 2A. 

Therefore the term with A is the principal one for 
an overwhelming majority of the particles, with the 
exception of a small vicinity v ,.., w I k,.., cs about 
the origin, containing approximately (m/M)312 par
ticles from among the total number. It describes 
energy-conserving electron diffusion over the 
angle e. If we leave out of (4) small terms contain
ing B and D and w in the argument of the 6-
function, then the resultant equation is similar to 
that describing the behavior of a Lorentz plasma 
in an electric field. [ 11 The role of the ions is 
played in our problem by ion-sound oscillations. 
To be sure, the effective frequency of the electron 
scattering 

(9) 

depends on the angle e. 
After turning off the electric field, all the elec

trons begin to acquire the same velocity as the 
current, and the instability sets in only when this 
velocity exceeds the critical value v0 """' Cs· At 
first, the energy of the ion-sound oscillations will 
increase exponentially with time. It is perfectly 
clear that the nature of the growth should change 
after the lapse of a time of order of 1/'y 
,.., (M/m) 112 wpl, since the work performed by the 
electric field on the particles increases not faster 
than eEt2/2, and in final analysis the energy of the 
oscillations comes from the work of the field. This 
means that the electron distribution function and 
the level of the vibrations should become such that 
the increment 'Yk becomes practically equal to 
zero for all values and orientations of the vector k. 

The initial state of development of the instabil
ity was calculated in [ 61 with a computer. It is the 
most difficult stage to solve analytically. Let us 
consider the properties of the steady state just re
ferred to. We assume that the steady level of the 
amplitudes of the ion-sound oscillations is so high 
that the force of friction between electrons and the 
vibrations does not allow the bulk of electrons to 
accelerate freely in the electric field, that is, 
A »(e/m)Ev2Y Then (4) can be solved by sue-

l)We shall show below that if there were no runaway elec
trons initially, then they appear after a time t - (eE/mr'c~/v0• 
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cessive approximations in terms of the quantity 
A-1. 

As the zeroth approximation we choose an arbi
trary function f0(v) which does not depend on the 
angle e. The correction f1 (v, e) to the function 
fo(v) is of the form 

e 

!t (v, e)= 1,[ !_!!__ v3 ~~ ~in2e ~ G (v)_...L !!__.a~] de. ( 10) 
.l 2m A au Sill e A av 

The constant G(v) should be set equal to zero, so 
that the flux of the particles vanishes on the axis 
e = 0, rr. If we multiply (4) by sin e, integrate with 
respect to e from 0 to rr, and use the expression 
for flo we obtain for f0 a differential equation that 
is accurate to terms of the order A - 1: 

ato - a a 5 ajo + b a 1 ajo -----u -- -----
ifr: u2 au au IL2 au u au ' 

1 e Ce3 r O (' sine' de' 
a = - -4 - E- J sine cos e dO J A I ' 

m Vo 0 (8 ) 

b = 1 ( _!_Ev0ce3 )-
1 f (n- B2 )sin 8 de. 

2 'm 0 A 
(11) 

We have introduced here the following convenient 
dimensionless variables. The velocity is meas
ured in units of Ce and u = v /ce, and the time in 
units of to = (mce/eE) ce/v e· The sequence in 
which the systems (8) and (10) should be solved is 
as follows: it is necessary to substitute the solu
tion (10) in (8) and integrate with respect to the 
velocity. This yields a nonlinear integral-differen
tial equation with respect to I cpk 12 (see (21)). 

ON THE LAW GOVERNING THE GROWTH OF 
ION-SOUND OSCILLATIONS IN THE CASE 
OF CURRENT INSTABILITY 

It is natural to attempt to obtain first solutions 
corresponding to stationary states, when ion-sound 
oscillations of constant amplitude are excited in 
the plasma and hinder the free acceleration of 
most or all electrons. If the distribution function 
of the electrons is isotropic, as in our case, then 
it is necessary that the amplitudes of the oscilla
tions differ from zero in the half-space k > 0 for 
at least one value of I k 1. In the half-space k < 0 
the oscillations certainly attenuate and there should 
be none there. 

Let us turn to Eq. (8). The first term in this 
equation contains a small quantity w/kv"' cs/v, so 
that it is sufficient to substitute in it for f the 
quantity f0(v, t) and the integral with respect to the 
velocity can be readily calculated. The second 
term in the expression for the increment, on the 

contrary, is determined by the asymmetrical part 
f1(v, e) of the distribution function. In this term 
we can replace o (w - k · v) by o(k· v). This means 
that for each fixed k the contribution to the inte
gral is made by electrons whose velocities lie, ac
curate to a small angle "" w /kv, in a plane perpen
dicular to the wave vector. This condition can be 
used and integration carried out over the angle e . 
The quantity ke , at the accuracy chosen 

ke = -cos e' I sin e. 
If we take into account these simplifying cir

cumstances, then the expression for the increment 
can be presented in the form 

:n: w3 M ( w ) w 
v =- 2 k~mn 2:n:7iJ k 

1,1nax 

+ 2 Cos e' (' ___ d~~--- !_ (' ftdv} ( 12) 
~ (sin28-cos2e') '/, ae J 0 • 

The upper limit of integration Vmax is determined 
by the condition of applicability of the formula (10) 
for flo namely, A » eEv2/ m. The runaway elec
trons, y2 » mA/eE, are not taken into account in 
this formula. Their contribution to the increment 
will be estimated below. The damping of the oscil
lations by the ions is allowed for by the condition 
that the value of I k I be bounded from above. From 
(12) we can see, in particular, that the ion-sound 
instability has the following property. If the asym
metrical part of the distribution function f1(v, e) 
decreases with increasing v more rapidly than 
v-1, then the particles with the larger velocities 
will make no contribution to the increment. 

A similar simplification of the calculation can 
be made in the expressions for the coefficients A, 
B, and D, which can be rewritten in the form 

- ~) = 2:n: ~ (' k dk r - dx 
D m2 J ~ ( 1 - x2) '/, 

cos e' 
X=---

sin8 · 

We have to find a solution of (12) for which 

'Vk, e• = 0, :n: /2 ~ e' ~ 0; 

'Vk, e• < 0, e' > :n: I 2. 

(13) 

(14) 

The first term in (12) does not depend on the an
gle e'. It can be readily checked directly that if 

'lim ax 

f) (' c 
- J ft(v, e)dv = -.-, ae o sm e 

(15) 

then the second term in (12) is a step-like function 
of the angle e', which reverses sign at e' = rr /2. 
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Indeed, 

'Ilj.Z d8 
2 cos 8' \ ---~-·-

J sin 8 (sin2 8- cos2 8') '/, 
:T/2-8' 

1[ ( sin2 8 \ -'hll :r;z 
= 4sign cos 8' tan- cos 8 -- -1) I 

cos2 8' . J 
::-rj~-·8' 

= - 2n sign cos 8'. 

Since the constant C does not depend on k, the 
condition (14) can be derived for only one value of 
k, and in order for all the k to be stable, we must 
set this value of k equal to kmax= ko ~ Wpi/v0 and 
C = v0f(v0). This means that if steady-state solu
tions of this type exist, then the values of the wave 
vectors of the ion-sound oscillations should lie in 
a narrow interval about the values ko = Wpi/v0 and 
the frequency should be equal to ""Wpi· Therefore, 
the distribution function of the waves Nk e' 
= (oE /8w)k2 1 'Pk l 2/87r can be approximated by the 
formula 

(16) 

Formula (15) is an integral equation for the 
quantity Ne'· We substitute in it the explicit ex
pression ( 10) for f1 and for the constant C = v0f(v0), 

and integrate with respect to v. As a result we ob
tain an equation relating the quantities A and B: 

Vmax 

3 e nc r 
voA = B sin 8 + ---E--sin2 8, nc = 4n \ fov2dv. (17) 

8n m f(vo) ~ 

If we substitute Nk B' in the form of (16) in A and 
B and integrate with respect to k, we obtain 

r x2- xy 3n 
~I (1 - xZ)'h N (yx)dx =I; y2, Nk8' = N(z)No, 

cos 8' 1 m n 
x= si'n 8 ' y=sin8, No= E-c-. (18) 

16n"wp;2 e f(vo) 

We have sought the solution of this equation in 
the form of a series in z = xy: 

N(z) = z2(1 + a1z + ... ). 
The coefficients of this series satisfy the recur
rence relation 

n+4 n+4 
an = an-!;:;,+ 3 = - 4-. 

Such a series can be readily contracted and we 
obtain 

4-3z 
Na, = z2 ( 1 - z) 2No, z =cos 8'. (19) 

The result obtained has no physical meaning, since 
1 

the oscillation energy J wpiN e'dz vanishes at in
o 

finity. 

In order to eliminate the divergence of N(z) at 
z = 1, we must forego the requirement that the 
amplitudes of the oscillations do not change in 
time. Since Ne' diverges at small angles, it is 
natural to assume that the fastest to grow are os
cillations in just this direction and that outside a 
small vicinity of B' = 0 the oscillations are sta
tionary. This assumption is satisfied by the func
tion N(z, t) chosen in the form 

N(z,t) =z2 (4-3z)[1- (1-e(z,t))z]-2, (20) 

where E(z, t) is assumed to be small compared 
with unity at any instant of time and for arbitrary 
z. Therefore N(z, t) is close to N(z) if 1- z 
» E(z, t). 

Let us consider a small vicinity near the point 
z = 1. The equation for N(z, t) can be obtained by 
substituting the expression (10) for f1(v, B) in for
mula (12) for 'Yk e' and using expressions (13), 
(16) and (20) for the quantities A, B, Nke', and 
N(z, t). We have 

1 
1 rl 1 s ydy 
----lnN(z,T) =-=-
2 d,' y'2n z ( 1 - yz) 'lz (y2- z2) '/,I (y, t) 

y 

X[(' z'(z-z')N(z',t)dz' 3n l 
~ (y2- z'Z) '/, + 4 Nozy2 ' (21) 

Y z'2dz' 
I (y, t) = ~ 1 (yz _ z'Z) ,1, N (z', t), y = sin 8, 

•' = t( Jt~ w4 M f(vo)) ~ twp;~ v m (~t 
2y'2 k3 nm 16 M Cs 

We see from this equation why there are no station
ary solutions. Indeed, when z = 1 the right side of 
the equation is always positive. Since we have as
sumed that E(z, t) « 1, the values of the integrals 
of N(z', t) in (21) are determined by the behavior 
of the integrand at the outer limit. We shall use 
this circumstance and transform (21) in the region 
of 1 - z « 1 in the form 

where we have introduced new variables ~ = 1 - z, 
~' = 1 - z', and 77 = 1 - y. The last term in (21) is 
small when ~ ::s E compared with the first term, 
like E: 112 , and we have left it out from (22). 

It is easy to show that (22) has solutions of the 
form E(L t) = Eo(~t)/t. Indeed, the equation for Eo 
does not depend explicitly on the time: 



QUASILINEAR THEORY OF CURRENT INSTABILITY IN A PLASMA 149 

"' 1 ( deo ) 1 ~ d"f. 
eo+ 'ljl ¢ d1Jl -Eo =- -;t" o [%(1Jl- %)]''• 

'ljl=st. (23) 

Let us express the energy of the ion-sound oscilla
tions in a unit volume by Eo: 

(24) 

We have obtained the important result that the en
ergy of the oscillations increases in proportion to 
the time. We must still verify that the coefficient 
of t is finite. Let us assume that the integral di
verges at a point ¢0• Then the ratio of the similar 
diverging 'integrals in (23) would be equal to 1/Jo - 1/J 

and the equation for E 0 would take the form 

'IJld(~+'IJl) =(eo+'$) {1Jl-1Jlo)+(eo+1Jl). 
·1Jl 

Its solution E 0 + ·1/J = C elf! ¢1- 1/Jo is not equal to 
zero only at the point 1/J = ¢0, thus contradicting 
the assumption made. The exact value of the coef
ficient can be obtained by solving (23). 

RUNAWAY ELECTRONS 

If we know the distribution function Nke' for 
the oscillations, then we can obtain explicit expres
sions for the'l(}uantities A, B, and D and for the 
particle distribution function f0 + f1 (v, 8), and then 
calculate the electric current density j in the 
steady state. All these quantities are determined 
in final analysis by the function f0(v, t). The time 
variation of the function fo(v, t) is described by 
(11). Let us write it out once more 

where 

" e 
a=-_!_ _!!_E Cea i sine COS e de i sine' de' 2f(vo) Ce3 

4 m Vo ; J A (e') :::::: nc ' 

" 1 ( e )-1 i ( B2) n b = - - Evoce3 J D-- sine de :::::: 5 ·1Q-3 _c_ • 
2 m 0 A fce3 

(26) 

In calculating the coefficients a and b we have 

used formula (20). The first term on the right 
side of (25) describes the heating of the electrons 
by an electric field. It is obvious that the particles 
are heated principally when their velocity is anti
parallel to the field. The angles e ::::; 1r /2 make no 
contribution to the coefficient a. It therefore does 
not depend explicitly on the time. The second 
term takes into account the heating due to the small 
inelasticity of the scattering. The order of magni
tude of a is unity. 

For large velocities u » 1 the principal term 
in (25) is the first one. An equation of the form 

of 1 a 5 of 
fh: = "i.i2 au u fJu 

(27) 

describes, in particular, the heating of electrons 
in a Lorentz plasma. Its solution is described in 
detail in a paper by Kruskal and Bernstein. [ 7l We 
shall use the results of this paper. Rapid heating, 
which leads to the appearance of runaway elec
trons, begins with T,.... 1. The electron distribution 
function has in the region UT > 1 the form 

n 1 , _. g('t) 
f- --'t''exp(-'t '•)==--. (28) 

- 24:rt'l•ce3 (u't) 4 u4 

When T ~ 1 the solution (28) becomes incor
rect, since particles with u .$ 1, for which (27) is 
not valid, begin to influence the heating described 
by this solution. It is physically clear that the ad
ditional heating described by the second term in 
(26) can only increase the particle flux in a high
velocity region. We shall therefore use formula 
(28) for estimates even when ~ 1. 

2 When T < 1 (t < mce/eEv0) the number of 
heated particles ,(v > Ce) is exponentially small 
and we can neglect the variation of the initial dis
tribution function. The electron current for T < 1 
does not depend on the time and is equal to 

j = - e ~ f,v cos e dv :::::: - envo (29) 

when T ~ 1 (t > mc~/dEv0) the current of the 
heated particles ((ce/v0) 1/ 2ce > v > ce) increases 
rapidly and after several T units it becomes equal 
to 

" "m•o: e of e 
j = - e2:rt i i v cos e -Ev3 - i sine, de, sine de v2dv 

J J 2m fJv J A (e,) 
0 0 

(30) 

Further increase in the current is connected with 
the appearance of runaway electrons. 

So long as the number of runaway electrons is 
small, we can disregard their contribution to the 
increment, and when solving (4) for the runaway 
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electrons we can assume the oscillations to be 
specified and describe them by means of the dis
tribution function (20). At velocities v » Ce the 
largest of the diffusion terms in ( 4) is the first 
term. Its order of magnitude is eEc~/v0m and is 
comparable with the last term, which takes into ac
account the change in the electron distribution 
function under the influence of the electric field 
when v2 ~ c~/v0 = ~max· At high particle veloci
ties the scattering by the oscillations loses its 
effectiveness, and the particles begin to acquire 
velocity freely in the electric field. If we neglect 
the scattering completely, then the distribution 
function f of the runaway electrons is an arbitrary 
function of s = ( eEt/m- v cos 8) and v 1 = v sin e. 
Its form can be established by equating the diffu
sion flux of the particles in u-space at u 
< Vmax/ce, 

j, = -u58f / ou = 5g(T), (31) 

and the flux of the runaway electrons, which in our 
variables is equal to fce/v0• Therefore 

_ Vo ( VoU ) 
j =-5g -r--cos8 F(u.1.). 

Ce Ce 

(32) 

Since the velocity of the runaway electrons in
creases predominantly only along the field u 11 

= u cos e, and the component u1 can change only 
as a result of scattering by the oscillations and is 
small, we can state the following with respect to 
F(u 1): the function F(u 1) should decrease rapidly 
with decreasing u 1 when u 1 > v ma~ce. If in ( 4) 
we take into account the diffusion with respect to 
the angle e as being a small correction, then the 
function F will depend little on u 11 • 

Let us estimate the contribution of the runaway 
particles to the increment (8). To calcu~ate the in
tegral we must know the d!pendence of f on u 1 . 
We choose it in the form f ~ In u 1, so that the 
function becomes continuous with f1(v, 8) when 
u ~ vmaxlce· In light of the foregoing, this choice 
is natural. Thus, 

( VoU) n Vo X 5g T-- du :::::::: '\'- -, 
Ce n Ce 

(33) 

where e" = ( 7T /2) - 8'. We see from this estimate 
that the contribution oy of the runaway electrons 
to the increment y is small. The current of the 

runaway electrons is equal to 

_ 1 e 
j = - 2 en---;;:Et. (34) 

This formula, stri~tly speaking, is applicable when 
T .$ 1, so long as n << n. When T ~ 1 
(t ~ mc~/v0eE) the runaway-electron current is 
approximately equal to -enc~/v0 , and the thermal 
velocity scattered is ~v 11 ~ c~/v0 • 

OVER-ALL PICTURE OF THE PHENOMENON 
AND DISCUSSION OF THE LIMITS OF APPLI
CABILITY OF THE OBTAINED SOLUTIONS 

On the basis of the results obtained we can de
scribe the over-all picture of the phenomenon. 
After a time t = mv0/eE0 following the application 
of the electric field E, the electrons acquire a ve
locity v0 which exceeds by several times the ther
mal velocity of the ions, and ion-sound os~illations 
begin to be excited in the plasma. During ...._ time of 
the order of (M/m) 1/ 2 wj;L so long as the instabil
ity is developing, the electron current will grow. 
Then the oscillation amplitude will reach a value 
such that the frequency of the scattering of elec
trons by the oscillations becomes larger than 
eE/cem, ce = (2T e/m)1/ 2 , and the electron accel
eration will cease. Some kinetic energy in excess 
of mvV2 will go over into oscillations and ther
mal motion, the electrons will decelerate to an 
average velocity v0, and the states which we have 
investigated in detail will set in. The initial phase 
of development of instability, as already noted, 
was investigated with the aid of a computer. [ 61 

During a time t < to (to = mc~/eEv0) after the 
start of the instability the electron current does 
not change and is equal to -env0• The work of the 
electric field enEv0t during this period goes to 
increase the energy of the oscillations and to heat 
the electrons. The energy density of the oscilla
tions increases in proportion to the time and 
reaches by the instant t =to a value ~nTe. The 
growth is confined predominantly to oscillations 
that travel in a direction strictly opposite to the 
field E. Simultaneously the electrons are heated, 
the current of the heated electrons increases, and 
the runaway electrons appear. All these processes 
have a characteristic time to. and after the lapse 
of several times to the average energy of the elec
trons which experience frequent collisions in
creases by a factor ( ce/v0) 1 / 2, the rms scatter of 
the velocities v 11 of the runaway electrons reaches 
a value ~ Mc~/m, and their current reaches 
-enc~/v0 • Of course, the current of the runaway 
electron increases with time even further, but the 
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solution obtained by us ceases to be valid when 
t > f.o. Thus the ion-sound instability limits the 
growth of the current only in a time 

t~--~---
mce2 mce ( M ) 'I• 
eEv0 eE m 

Let us investigate the limits of applicability of 
the obtained solutions. It is necessary first that 
the time to be larger than 'Y-i ~ wpl(M/m)1/2. 

Only then is it meaningful to consider the steady 
state. This condition is satisfied if E2/81rnTe 
< m/M. Further, we have not taken into account 
in (2) the change in the amplitudes of the ion-sound 
oscillations, due to the nonlinear interaction of 
the waves. The principal nonlinear process in our 
conditions is the scattering of the ion-sound waves 
by .ions. For oscillations described by (20), it has 
a frequency[ 81 

The maximum value of cifv~ at which ion-sound 
instability can occur is numerically equal to ""0 .1. 
Therefore, strictly speaking, we cannot neglect 
nonlinear scattering of the waves by the ions if 
W/nTe is of the order of unity, that is, the solu
tion (20) is valid for times shorter than 
to = mcU eEv0• 

Qualitatively, in the stationary state, after the 
lapse of a time t ~ to, when the energy of the os
cillations propagating strictly opposite to the field 
E grows to a value "'nTe, the nonlinear scattering 
of the waves by the ions should cause a new state 
to be established, in which the linear increment 
becomes comparable with the scattering frequency 
ve'· We hope to investigate this state in a forth
coming paper. But it is clear even now that all the 
results pertaining to the heating of the electrons 
remain qualitatively in force. 

A few words about ion heating. The minimum 
velocity v0 is determined for the condition that 
the damping of the oscillations with phase velocity 
w /k = v0 by the ions is somewhat smaller than 
the buildup of these oscillations by the electrons. 
The:refei'e, even during the process of creation of 
the oscillations, a noticeable part of the work of 
the field goes to heating the ions. The ions should 
be heated also when ion-sound oscillations are 
scattered by ions. It can be shown that for each 
scattering act the ions obtain a fraction of wave 
energy approximately equal to cif v~ ~ 0.1, so that 
the rate at which the ions are heated by this proc
ess is 

INSTABILri'Y OF CURRENT IN A BOUNDED 
PLASMA AND IN A STRONG MAGNETIC FIELD 

An interesting result is obtained if for some 
reason the oscillations can be excited only in a 
cone with apex angle Oo about the direction of the 
electric field. Such a situation takes place when 
there is a strong magnetic field parallel to E, and 
the plasma frequency of electrons is comparable 
with or smaller than the electron cyclotron fre
quency eH/ me. Another example is when the cur
rent flows along a narrow tube filled with a plasma. 
In such experiments the oscillation energy can be 
taken out to the wall with group velocity 

oro k 
fJk = Cs(krv)-2 k. 

The oscillations traveling radially are therefore 
more stable. 

For oscillations inside the cone 0' < e0 we can 
use the solution (20). The particles whose veloc
ity vector falls in the interval of values e = 1r /2 
± e 0 are scattered by the waves and diffuse over 
the angle e, but as soon as they fall in the cone 
e < 1r /2- 00 they begin to accelerate freely. 
Since the characteristic value of the diffusion flux 

. A e Ce 
Ja~-2 1~-E-f 

Ce m Vo 

is much larger than the flux fe = eEf sin e I m of 
the freely accelerating particles, the velocity of 
the runaway electrons is determined by the value 
of the flux fe, where f must be replaced by f. So 
long as the number of runaway electrons is small, 
their current will increase like 

eEttm 2 

j =- 2ne ~ v.1_dv.L ~ vufdvu ~-en ( :_Et) cos2 80, 
0 0 Ce m 

until all the electrons run away after a time 
t ~ (mce/eE) cos-2 e0• 
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