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The method of invariant tensor integration is used to calculate the cross section for electro
magnetic pair creation. The cross section for electromagnetic pair creation in the collision 
of a photon with a charged particle is calculated taking into account the recoil and the con
tribution of dispersion diagrams. The cross section for the annihilation of a pair of particles 
into two pairs of charged particles is determined exactly. The integration of the Compton ten
sor of fourth rank over the final states of the fermion pair is carried out. 

I. INTRODUCTION 

PHENOMENA such as the emission of bremsstrah
lung in the collision of charged particles and the 
pair creation in the collision of photons (or charged 
particles) with charged particles are being studied 
extensively at present, in order to verify the valid
ity of quantum electrodynamics at small distances, 
to investigate the electromagnetic structure of par
ticles, etc. (see for example [t ,zJ). It is evident 
that for this purpose the theoretical cross sections 
must be known with sufficiently high accuracy. It 
is known, on the other hand, that the theory of such 
processes leads to considerable computational 
difficulties. The precise cross section is known 
only for the case of pair production by photons in 
the field of a nucleus (Bethe-Heitler formula). For 
other cases only approximate expressions for the 
cross section for certain limiting situations are 
known. 

A number of earlier papers[S-G] have dealt with 
the bremsstrahlung in the collision of two charged 
particles and the emission of photons in the two
body annihilation of particle pairs. This was done 
by using a method whose main idea was to integrate 
the separate parts of diagrams exploiting their 
relativistic, gauge, and charge-conjugation invari
ance. This method makes it possible to find the 
total cross sections (integrated over the states of 
the created particles) without having to do lengthy 
calculations of differential cross sections. The 
same method can be applied to calculate the cross 
sections for electromagnetic pair creation. In the 
following we shall treat all charged particles as 
distinguishable, since for identical particles the 
interference between direct and exchange diagrams 
leads to considerable complications. If the emitted 

particles are in a narrow cone about the direction 
of incidence the correction for such interference 
terms turns out to be very small in practice. 

In Sec. 2 we calculate the cross section for the 
creation of pairs of fermions with spin 1/2 or 
scalar particles in the collision of a photon with a 
charged particle. We find exact expressions for 
the differential cross section with respect to the 
invariant mass of the pair of charged particles. 
The cross sections are discussed from the point 
of view of the study of the form factors of the par
ticles and the verification of the validity of quantum 
electrodynamics at small distances. In Sec. 3 we 
consider the annihilation of a pair of particles into 
two pairs of charged particles. We obtain an exact 
value for the differential cross section with respect 
to the invariant masses of the created pairs and 
discuss these cross sections; we also obtain ap
proximate expressions for the total cross sections. 
In Sec. 4 we carry out the integration of the 
Compton tensor of fourth rank over the final states 
of the fermion pair. 

2. PAIR CREATION IN A PHOTON-FERMION 
COLLISION 

Consider, to lowest order of perturbation theory, 
the creation of a pair in the collision of a photon 
with a fermion of spin 1/2: y + A ....... A + B + B. It 
turns out that we can consider the creation of 
scalar particles and of spin 1/2 fermions together. 
In the case of a pair of fermions the process can 
be represented by four diagrams (Fig. 1). 

The total cross section, integrated over all final 
states of the created particles (all particles par
ticipating in the reaction are assumed unpolarized) 
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can be calculated as in [3,4] 1) noting that the re
quired expressions can be obtained from the equa
tions of[3•4J by the substitution 

(2.1) 

The cross section appears in the form 

(2.2) 

where daa is the contribution from the diagrams 
labelled a in Fig. 1 and d% that of the diagrams 
labelled b; the interference term between diagrams 
a and b vanishes after integration of the final states 
as in [3- 5]. 

::E~~. 
Pt Pz p, Pz 

b a 

FIG. 1 

In the following we shall carry out the integra
tion over the final states of the particle A (in [3•4] 

this required integration over the final states of 
the photon). It is convenient to use covariant var
iables: 

(2.3) 

The integration over the azimuthal angle c.p can be 
done trivially and then the cross section for pair 
creation can be represented in the following form 
(the substitution (2.1) is most conveniently carried 
out by using Eqs. (3.2), (3.4) of[ 5J and (2.10) and 
(2 .21) of[ 4J). 

The contribution of the b diagrams is 

CJ:lcrb a3~o 1 { 2 2 [ c2A2 + ca] 
dl12 dN = 2x12 A4 (Zm +A) Ct + (kA)2 

where for fermions 

caF = 112 (!12c1F + 2~t2Lt)' 

Ct.F = 2112 - (2[12 + 112 I 2)L~, 
and for scalar particles 

(2.4) 

(2.5) 

Here 

Xt =-X= (kpt), 
X2 = -x' = (kp2) = 1/2 (N - 112) + Xt, 

- ( !12- 4~t2 )'/, 
11 = Pa + p~o+, A = Pt - P2, ~o - 112 , 

L1 = __1:_ln 1 + ~0 
~0 1- ~0' 

(2.7) 

J..t is the mass of one of the particles of the pair, 
and m the mass of A. The contribution from the a 
diagrams is 

where 

(2.9) 

and for point fermions 

(2.10a) 

and for scalar point particles 

(2.10b) 

Equation (2.8) is valid also for the creation of 
pairs of extended particles, but in that case D1 and 
D2 are known combinations of the form factors [ 4] . 

The variables .6.2 and A2 vary within the follow
ing limits: 

4[12 ::;::;; !J.2 ::;::;; (l's2- m)2, s2 = (Pt + k)2 = 2xt + m2; 

x!ax = Xt(2Xt ;- tl2) - !J.2 + X21 [(2Xt- !12)2- 4m2!J.2]'/, 
min S S 

(2.11) 

(see Fig. 2; we use the variable x2 = -A2). 

x 2=-A 
xlnax- ------,-

FIG. 2 

By inserting the expressions (2 .4) and (2 .8) in 
(2 .2) we find an exact expression for the cross sec
tion for the creation of a pair on a point fermion. c18 = - 1/2, c28 = 1/2 (!J,2Lt - 112 I 2), 

cas= _If2csF, c,s = _tj2ct.F· (2.6) Another important case is the creation of a pair 

l)ln this section we use the notation of the earlier 
papers[•..s]. 

of point particles on particles with a known elec
tromagnetic structure (the creation of electron
positron or muon pairs on nucleons or nuclei). 
This structure is easily taken into account for the 
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contribution from the b diagrams by introducing 
appropriate form factors. It turns out that in this 
case one can write down a general formula for a 
particle A with an arbitrary spin [5-7]: 

rf2ab - aa 1 {A2 D A(2 -A2 ) 
d!'J.2 dA2 - 8:rtx12 N 2 1 a1 a2 

[ ( A2\ A2 (x1+x2\2l\ +D2A a1 2m2--1+-(a1+A2a2) ---)1 J• 
2; 2 X!-X2 J 

(2.12) 

where the Ci are given by (2.5) and (2.6), and nt 
and nf' are functions of the corresponding form 
factors. For example, if A is a nucleon 

D1A =IF!+ gF212, D2A = 1Fd2- ~;21F212; (2.14) 

where F 1 and F 2 are the electromagnetic form fac
tors for the nucleon. Similar relations for a scalar 
particle (e.g. the He4 nucleus) and a vector particle 
(e.g. the deuteron) are given in [8]. 

It is much more difficult to allow for the struc
ture of the A particle in the contributions from the 
diagrams in Fig. 1a. It seems that one of the most 
convenient ways of tackling this problem is to in
troduce inelastic form factors. We have considered 
this question in [8] where we have given an expres
sion for the contribution of the a diagrams to the 
cross section in terms of inelastic form factors. 
No information is at present available about these 
form factors, and to find them it is probably neces
sary to construct dynamical models. We hope to 
return to this problem in the future. 

It is particularly interesting to consider the 
ratio between the contributions from the a and b 
diagrams (assuming A to be a point fermion). 2l 

1. If K1 » m 2, J-! 2 we find: 
(a) In the strip xinin :s x2 :s m 2 always dub » dua 

and this strip gives the main contribution to the 
total cross section of the reaction. For large .6.2 

the ratio of the cross sections has, in this strip, 
the form 

dab ~ !:!_L1• 

daa m2 
(2.15) 

(b) In the region 4J-t 2 :s .6. 2 :s J-! ~ 2K1 -2m~ 
< x2 < x2 - - b 

daa x12 
--~---

dab x2!12L1 
(2.16) 

2 )The ratio of the a and b contributions is also discussed 
in[•] (for the completely differential cross section with five dif
ferentials) and in [' 0] (for a cross section with two differentials 
but assuming K,/m2 << 1). 

with m 2 :::; K2 :::; m ~. i.e., in this region dua » dub. 
The relative increase of the contribution dua is due 
to the smallness of the denominator of the propa
gator for the fermion A and the smallness of .6. 2• 

(c) On the line .6. 2 = x2, subject to 4J-t 2 :s .6.2 

:s J-!-r;; we have 

dab ~ x12 L ~ 1 
--~- ~~ 
da 11' ' 

(2.17) 

and near the intersection of this line with the upper 
limit of the region: 

daa ~~~~ 1 
dab m2 L1 

(2.18) 

In the rest of the region in general (apart from fac
tors of the order of the logarithm L1), dua ~ dub. 

2. If K1 ~ J-! 2, K1 « m 2 (J-! « m) then dub» dua 
for almost all values of the variables (with the 
possible exception of the region 1(b)). 

Consider the region in which the b diagrams 
dominate. To study the electromagnetic structure 
of nucleons (or nuclei) one should then study the 
cross section for large momentum transfer A2 

while the quantity .6.2 can remain arbitrary. For 
the study of the validity of quantum electrodynam
ics at small distances we must look at events in 
which the virtual line of the fermion belonging to 
the pair carries a large momentum. In general 
this momentum is not directly related to the quan
tity .6.2• However, if the pair creation takes place 
at a large angle to the direction of the incident 
photon, and the angle between the components of the 
pair is large, a large momentum of the virtual 
state corresponds to a large .6. 2• For a small scat
tering angle of the pair there is no such corre
spondence. 

Thus, subject to certain conditions (assuming 
that the contributions from the a diagrams can be 
calculated at least in the approximation of point 
particles), the calculated cross sections can be 
used both for the study of the electromagnetic 
structure of nucleons (nuclei) and for verifying the 
validity of quantum electrodynamics at small dis
tances. 

Another point of considerable interest is an ex
act result for the electrodynamic cross section 
(differing from the well known Bethe-Heitler 
formula by taking into account the recoil of A and 
the contribution from the a diagrams). By carrying 
out the integrations with respect to A2 we obtain a 
differential cross section with respect to the in
variant mass of the emitted pair: 



ELECTROMAGNETIC PAIR PRODUCTION 107 

{ [ 2m2+ ~2] 
X 2£4 2x1 - (2x1 + 2m2- ~2 ) --x-1 --

4 [ (2x1 - ~2 ) 2 - M2m2]'/• + ·--~-'-----

where 

l! 
Xmax 

£2 = ln-2-, 
X . mw 

Xi 

2 
2x1- ~2 - Xmin 

L~ =In 2 ~2 2 
Xi- - Xrnax 

(2.20) 

(2.21) 

By inserting the results (2.19) and (2.20) in (2.2) 
we find an exact expression for the differential 
cross section with respect to the invariant mass of 
the pair for the creation of a pair of spin-1/2 
fermions or of scalar particles on a fermion. 
Evidently we can in the same way easily obtain the 
cross sections for the production of a pair of 
charged particles on scalar or vector particles 
(see (2.8) and (2.12)). 

The exact expression for the total cross section 
of the reaction is quite lengthy, and we therefore 
consider here only the limiting case in which 
K1 » m 2, JJ. 2 • We then find for the creation of a 
pair of fermions 

aF = crbF = aro2 ( 28ln-2x1 - 2118) 
9 m~t 27 ' 

(2 .22) 

and for the creation of a pair of scalar particles 

a8 = ab8 = aro2 -In---- . ( 4 2x1 216) 
9 m~t 27 

(2.23) 

These results for the total cross section have 
the following important properties: (1) the whole 
cross section comes from the b diagrams, apart 
from terms of the order m 2/K1 and mJJ./K1; (2) the 
resulting expressions agree (in the rest system of 
A) with the cross section for the creation of such 
a pair in a Coulomb field [11]. Both these findings 
are connected with the fact that the main contribu-

tion to the total cross section comes from the 
region of small momentum transfer A2: 

(2.24) 

and in this sense the b diagrams can be called 
"peripheral." At small A2 the cross section dub 
rises sharply (because of the presence of the fac
tor 1/ A4) while dua varies slowly and remains 
small. For this reason the contribution dub to the 
integrated cross section turns out to be dominant. 
The proximity of the pole in A2 allows one to cal
culate the main contribution to the total cross sec
tion ub by means of the pole approximation 
(Weizsacker-Williams method) [12]; the range of 
integration in the pole approximation is the interval 
xinin s x2 s m 2. For the a diagrams for which 
,6.2 ~ 4JJ. 2, there is no such "pole region," so that 
for their contribution the Weizsacker-Williams 
method is not applicable. In addition it is clear 
that for small A2 the recoil is negligible and this 
leads to the result that regardless of the ratio of 
the masses m and JJ. the total cross section is the 
same as that for pair creation in a Coulomb field. 

3. ANNIHILATION OF A PAIR OF CHARGED 
PARTICLES INTO TWO PAIRS 

The method used for investigating the annihila
tion of a pair with the emission of a photon and the 
creation of a particle pair by a photon is also very 
useful for the investigation of reactions in which 
the photon is virtual. This includes the annihilation 
of a particle pair into two pairs of charged parti
cles, and the creation of a pair of particles upon 
collision of two charged particles. To lowest order 
of perturbation theory such a reaction is represen
ted by six diagrams (Fig. 3; we assume for defin
iteness that all particles are distinguishable 
fermions of spin 1/2). We consider here the 
annihilation of a pair into two pairs. The calcula
tion of the cross section for this process turns out 
to be considerably simpler than that of the cross 
section for the creation of a pair in a collision be-

-p; P5 -p~ PJ 

-p,• PJ 
-p;+ 

J~:J 
-p; Ps ~· ~~~ Pz -p: P2 A, -p: 

Pz -p*+ 
-p; Ps -p; Ps -p,+ p, -p: p, 

-~ I A: ~ ~· Pz -p: 
Pz ~ 2 P• Pz 2 -p"'• 

1 2 3 
FIG. 3 



108 BAIER, FADIN and KHOZE 

tween two particles. The reason is that the method 
we use is based on integrating the contribution of 
separate fermion lines, which is particularly con
venient for annihilation processes. 

We represent the matrix element of the process 
in the form 

M =A [ (1hvvu2) (usvav6) (uaLi«vvi) 

A22A32 

+ (ih~~~u2) (uav~vi) (uswv6) 

At2A32 

+ (ihvau2) (uav~vi) (usLa~'"v6)] 
Ai2A22 . (3.1) 

Here 

L2B~ = LiB~(1- 2)·, L3~'" = Li~'"('i- 3), (3.3) 

where (1-2) indicates the substitution -p7- p2, 
p3 - -p~, m 1 - m 2, and (1-3) stands for -p;- -p~, 
P3- p 5, m 1 - m 3; finally 

(3.4) 

Averaging over the spins of the initial particles 
and summing over the final spins we find 

(3.5) 

Here T 1, T 2, and T 3 are the contributions from dia
grams 1, 2 and 3 respectively (Fig. 3); T 4, T 5, and 
T6 are interference terms. We are interested in 
the cross section in which the integration over the 
final states of the created particles has been car
ried out. In this integration the contribution13 from 
the interference terms vanish. Indeed, we may 
write these contributions in the form 

(3.6) 

The quantities T 4, T 5 and T 6 contain the interfer

ence tensor Kvv 'a [3], which is antisymmetric in 

the momenta of the pair of final particles. In that 
case the integral which contains a o function must 
evidently vanish (Eq. 2.39) of[3]). 

It is thus sufficient to consider only the contri
butions T1 , T 2, and T 3. We write T 1 in the form 

where 

.11fiava'v'/mi2 = Sp [LtavA_(pt+)Lia'v'A+(Pa)] (3.8) 

is the Compton tensor, which is proportional to the 
cross section of the Compton scattering of a polar
ized heavy "proton" of mass A~ into a polarized 
heavy "photon" of mass A~, and 

is the current tensor. 
The integration over the final momenta p 5 and 

p~ can be done as in [3]: 

1 d3p6+ d3ps ( AaaAaa• ) 
\ ----6(Aa- Ps- P6+)lsaa• = Cs gaa•- , 
· E6 Es Aa2 , 

(3.10) 

C = 2n ( i\. 2 +2m 2) ( As2- 4ma2 )'/, 
3 3 . 3 3 Ai ' . (3.11) 

From the gauge invariance of the Compton tensor 
we have 

(3.12) 

and the only contribution comes from the contrac-
' I I 

tion M{"va v gaa' = MfV 
The integral over the term containing T 1 can be 

written in the form (following a method used in [ 4]) 

1 C3 ~ d3pi+ d3p3 
Bvv' = _\ d"A~--- .llfivv' 6 (Ai- Pi+- P3) ---

• A24A34 Ei Ea 

_ ( vv' _ A2"A2v' ) 1 4 Ca 
- g ~ .ldAi A2"A3" k (3.13) 

To find the function f1 it is sufficient to contract 
both sides of (3.13) with the tensor gvv': 

1 I , dapi+ d3ps 
f; = ~ .l M;•v gw•6(At- Pi+- Pa) ----. 

3 Ei E3 
(3.14) 

For the case in which both "photons" are heavy, 
the contracted constant tensor takes the form 

Mi = .llfiw'gw• = 2xi-2{xi2 + 2xi(m12 - (A~3)) 

+ 2mt2 (2m12 + A22 + Aa2) + Ah\a2} 

+ terms (pt+ ++ Pa) + 8xi-ix2-i{2mi4 + m12(A2A3) 

+ i/2Ai2(A22 + As2)}. (3.15) 

The calculation of the invariant integral of the con
tracted constant tensor is easiest carried out in 
the center-of-mass system of the particles P7 and 
p3; we finally obtain: 

8n { 1 
fi = 3 f3t 1 + b2 _ az [4mi" + 2mi2 (A22 + A32) + A22A32] 
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+_!In ( -~±-~) [ 2m12 (m12 + (AzAs))- (AzAs) 2 !lj 
ab \ b- a 

_ A;2 (A2z + A3z)]}, (3.16) 

where 

~~ = [A12 - 4m12) I A12] ''•. b = (AzAs), 
a=~~~. ~ = [ (AzAa) 2 - Az2Aa2J"' = [ (Av\z) 2 

- A12Az2] '"· 

It is convenient to write also the volume element 
d4A1 in the form 

(3.17) 

where J and rp are the angles of the vector A1 in the 
system in which A2 = 0; the angle integration then 
becomes trivial. We finally find 

d2cr1 6a4 Ca Cz /1~ 

dA12 dAs2 ( 2n) 41 F I As4 Az4 Az2~z ' 

Cz = Ca(3-+ 2), ~z = ,~1(1-+ 2). (3.18) 

The contribution from T3 can be calculated in a 
similar manner so that 

(3.19) 

In the calculation of the contribution from the 
T 2 term the integration can at once be carried out 
over both current tensors: 

4a4 \ 4 Ca C1 
daz=- (2n)41FI) dAi Aa4 A14 Mz, 

Mz = M1(i-+-+ 2), C1 = Cs(3-+-+ 1). (3.20) 

We integrate the contracted Compton tensor over 
the angles and obtain 

/2 = ! ~2 ~ M zd (cos {}) dqJ = h ( 1 -+-+ 2) . (3.21) 

Finally the contribution to the cross section takes 
the form 

6a4 Cs C1 /z~ 

(2n)~IFI As4 A14 'Az2 ~z · 
(3.22) 

We have thus obtained an exact expression for 
the differential cross section with respect to A I 
and A~ in the form 

d2a d2a1 d2az d2cra (3 .23) 
dA12 dA32 = dA12 dA32 + dA12 dAi + dA12 dAi' 

in which the terms are given by (3.18), (3.19), and 
(3.22). 

The range of variation of the variables At and 
A~ is determined by the conditions 

4m12 :;::;;; A12 :;::;;; (l1Al·- 2ms)2, 

(3.24) 

These are shown in Fig. 4. The lower straight line 

II, 

FIG. 4 

represents the threshold for pair production (the 
particles in each pair have equal momentum). The 
upper boundary corresponds to the case in which 
the components of each pair go off in opposite 
directions carrying the same momentum in their 
c.m.s. 

The cross section da1 (da3) contains the function 
C3/A§ (C/At). The properties of this function are 
investigated in detail in [ 5], where it is shown that 
as a function of A~ (At) it has a peak near the lower 
limit. This peak has a clear physical meaning: in 
the region of the peak the two components of the 
pair are emitted in the same direction, and the 
invariant mass of the pair is small, so that we can 
speak of a front which is converted into a particle 
pair. The cross section da2 contains the two func
tions C1/At and C3/A~; it has therefore a double 
peak (near the apex of the right angle in the domain 
of variation of the parameters (see Fig. 4)). As 
shown in [ 5], these peaks are high, but very narrow 
so that they do not give logarithmic contributions 
to the total cross section. 

The determination of the exact integrated cross 
section is a very complicated task. We shall carry 
out only an estimate of the main contributions to 
the integrated cross section. 

In the case in which A~ » mY, m~, m~ the main 
contribution to the integrated cross section contains 
the cube of a logarithm: 

(3.25) 

In the case 
1 a4 Az2 

cr1 = cra = -·---ln3 --
27 niFI 4m2 

It is much more difficult to obtain the integral 
cross section to the next order (the square of the 
logarithm). We consider only two limiting cases: 

(1) m~ « mrm~/A~, A~ » mt, m~, mL m1 > m2. 
In this case the integrated cross section is 

a= (4a" I 9n IF I) [1 hl13 + 1/dz3 + 1/4l1li - 1/4l12ls 
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where 

(2) 4m~ ~ A~, m 1 > m 3 

Then 

a= (4a4 / 9niFI) [1/4!13 + 3/sl1li- 3/sl12la- 15/sl1la 

+3/dn 2 · (l12 + l32)]. (3.29) 

Note that in this case o-2 does not contain a cubic 
logarithmic term as the result of the smallness of 
the fermion propagator in the contribution from 
diagram 2 in Fig. 3. 

We remark that in both these cases the contri
butions from the cubic and quadratic logarithmic 
terms are, over most of the range, of the same 
order of magnitude and of opposite sign. The ap
proximation based on the cubic logarithm only may 
therefore be rather inaccurate except in the ex
treme asymptotic region. 

4. INTEGRATION OF THE CROSS SECTION FOR 
PAIR PRODUCTION IN COLLISIONS OVER THE 
FINAL STATES OF THE PAIR 

For the case in which all three particles involved 
are fermions the diagrams of the lowest order of 
perturbation theory are shown in Fig. 3, and here 
Eqs. (3.1) to (3.5) are applicable if we make the 
substitutions 

In the process of integrating over the final states 
of the pair (p5, p~) there are the following differen
ces from the case of the annihilation of one pair 
into two pairs (Sec. 3): (1) the interference term 
between diagrams 1 and 2 does not vanish and this 
considerably complicates the calculation; (2) one 
has to integrate over final states the Compton ten
sor of fourth rank Mfpo-p' which appears in the ex
pression T 3• The present section is concerned 
with this question. 

The sought tensor 

I d3p d3p6+ 
Bapcr'p' = j Macrpcr'p'fi(ps + PB+- Lli- Liz) ~-5__ (4.2) 

Es EB 

depends only on the vectors .6. 1 and .6. 2 • Using the 
fact that 

(4.3) 

and also the fact that this tensor will be multiplied 
eventually by current tensors for which we know 
from gauge invariance that 

(4.4) 

the only non-vanishing contribution comes from the 
following tensor: 

ljcrpcr'p' = 2Jt~a [ d1gaPga'p' + d2grr'gaa' + d3gra'gp'cr 

d4 d5 d6 
+ ~ gaa' Ll!Ptl1P' + -gPP'tl2crtl2a' + ~-(gPatl1P'tl2cr' 

D D aalJ ' 

+ gP'a' tl1Ptl1a) + ~ (gPCJ'tl1P'tlzcr + gP'atl1Ptl2a') 
a aD 

+ :!!__Ll Ptl P'tl aLl a'] (4.5) fl211 22' 

where 

D = ai- a1a2, ~3 = [ (ll32 - 4ma2) / L'la2P'. (4.6) 

We note here that the tensor Bo-pa-'p' (allowing for 
the restriction (4.3)) contains 27 terms dn of which 
only eight are independent; for these we may 
choose, for example, d1 to d8. 

The tensors (3.10) and (4.5) are sufficient to 
express any cross section for the production of 
spin 1/2 particles in the collision of two charged 
particles or of a photon and a charged particle, 
after integration over the final states of the pair. 

The coefficients di (i = 1, ... , 8) can be deter
mined if we contract the tensor Bo-po-'p' in eight 
independent gauge invariant ways (so as to elimin
ate all terms with dn for n > 8) and compute the 
corresponding integrals (4.2). In this way we ob
tained a set of eight equations for the coefficient 
di. Their solution is: 

Sd _ 16 + + 8 4ll32(6aa- m32) 
1- gl g2- D 

+ [ g3 + l6a32 ( 1- a3~2 ) + a1~2 g1 J ~ , 
4lla2(lli- 2aa + mi) [ 

8d2 = g1 + 8g2 + D + -ga- 16ma4 

4aa2L'la2(L'la2 + 2m32) a1a2 J L + +-gi ~, 
D 2 aa 

4ll32(2aa + ma2 ) [ a1a2 J L 
8da = g1- Sgz+ D + ga+-2-gi ~· 

a2 [ 3a1L'la4a2 
d, = a2d2 + ZD 2Lilaz + D + 2a1Li32g2 
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~~[ ~ ] - D 2~32az + 2gz~32 (a1 + 2m32) + g4 -;;;L . 
Here 

g3 = 4[a,az + ~32 (a3 + m32 ) - 2(a3 + m32 ) 2 ) 

+ ~32D-1 [4a32 (m32 + a3) + a,az~32], 

(4.7) 

g4 = a 1~32 ( a1 + az) + 2m32 (i2a,a3 + 2a32 - a,az + a,2), 

L = ,_1_1n a3- ~31'D. 
~dD a3+ ~dD 

(4.8) 

If ~I = ~~ = 0 the tensor Bupu'p' is proportional 
to the cross section for the conversion of a pair of 
polarized photons into a pair of fermions after in
tegration over the final state of the pair. After 
averaging over the polarization of the photons we 
find the well-known result for the total cross sec
tion of the process y + y- e- + e+[ 11 ]: 

__ 2ne•~3 (do+ 2d o +do) (4.9) 
Gyy- ~i 1 2 3 · 

If only one of the photons is real we can easily go 
over to Eq. (2 .4). 

As already mentioned in Sec. 2, the lower limit 
for the parameters I ~ 1 1 2 and I ~2 1 2 is very small 
(cf. (2.25)) and just the region of smalll~d 2 and 
1~2 1 2 gives the major contribution to the total cross 
section for diagrams of type 3. For this reason 
such diagrams may be called peripheral. Since, 
however, the overlap between the regions of small 
I ~1 1 2 and I ~2 1 2 is small and the other diagrams also 
contain one small momentum transfer (i ~ 1 1 2 or 
I ~2 1 2 ) the magnitude of the contribution from dia
gram 3 is larger than the others only logarith
mically (and not in power-law fashion as in the 
case of pair creation by photons). Diagram 3 gives 
the main (logarithm-cubed) contribution to the total 

cross section in the limit first obtained by Landau 
and Lifshitz [ 11 J : 

28 s2 

a = -- ro2a2Jn3 --' s2 = (p, + pz)2. 
27:rt m2 

(4.10) 

In conclusion the authors express their thanks 
toR. R. Wilson for communicating experimental 
results on pair production prior to publication. 
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