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The possible existence of undamped energy flow in a two-band system with pairing is demon­
strated. A proof is given of the Landau criterion for superfluidity in the case of crystalline 
periodicity. The superfluid motion is stable with respect to Umklapp processes and scattering 

by impurities. 

JN semiconductors with a narrow gap and in semi­
metals with a small current carrier concentration, 
as Keldysh and Kopaev[ 1 J and the authors [ 2J showed, 
the Coulomb interaction between electrons and 
holes may, at low temperatures, lead to substan­
tial rearrangement of the spectrum. This rear­
rangement is accompanied by the formation of 
bound electron-hole pairs, precipitating into the 
Bose condensate at temperatures less than a cer­
tain critical temperature T c· Previously, [ 2J on 
the basis of an analogy with the case of supercon­
ductivity, it was conjectured that the Bose conden­
sate behaves like a superfluid. However, the pos­
sible existence of superfluidity in the model under 
consideration requires special proof, since it is 
essential to introduce the crystal lattice (band 
structure) into the problem, and the direct applica­
tion of a Galilean transformation would imply 
trivial motion of the crystal as a whole. 

The Hamiltonian of the system under consider­
ation has the form 

H = Ho + H1 +Hz, 

p 

the spectrum. H2 can be taken into account as a 
perturbation acting on the rearranged state, which 
we shall do below. 

We shall likewise not take the electron-phonon 
interaction into account since its role in compari­
son with the Coulomb interaction, as V. V. Tol­
machev(3J showed, is determined by the ratio of 
the Debye frequency to the energy corresponding 
to the radius of the Coulomb interaction, but in the 
case of interest to us, close to the band edge, the 
Coulomb interaction is weakly screened so that 
the indicated ratio is large. 

In order to obtain a state of thermodynamic 
equilibrium with a nonvanishing energy current, it 
is necessary to introduce an additional integral of 
the motion into the Gibbs distribution. The opera-
tor 

(3) 
p 

commutes with the Hamiltonian; therefore, in or­
der to clarify the question of superfluidity it is 
necessary to start from the distribution 

exp {-(Ho + H1- ~uV- uP) I kT}, (4) 

H1 = 2] V (p, p') acp+avq+avq•acp', 
P+<!=P'-tq' 

(1) where u is a Lagrange multiplier having the di­
mension of a velocity. 

where for small values of p If we change to the operators bop = ac,p + mcu 

Ecp = Eco+p2 /2mc, Evp = Evo-p2 /2mv. (2) bvp = av, p- mvU' then ( 4) takes the form of the 

Here c and v denote, respectively, the conduction 
and valence bands; V(p, p') is the matrix element 
of the Coulomb interaction. The quasimomentum 
is measured in each band from its extremum (see 
[ 2]); the dependence on spin indices is inessential. 
Umklapp processes and scattering by impurities 
are attributed to H2• This part of the interaction 
does not lead to singularities in the scattering am­
plitude and may be discarded in connection with an 
examination of the problem of rearrangement of 
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usual Gibbs distribution without the term u • P. A 
transformation to new quasiparticles correspond­
ing to a rearranged ground state is accomplished 
with the aid of the canonical transformation 

(5) 

the coefficients of which are found from the condi­
tion for minimization of the energy for given aver­
age values of the operators N and P and for given 
entropy, [ 3J i.e., Up and Vp satisfy the equations 
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Up2 + Vp2 = 1, 

where N2,1(p) = ( a2,1p a 2,tp) is the occupation 
number for quasiparticles. 

Substituting ( 5) into ( 6), we find: 

where 

and .6-p is determined by the equation 

Llp = ~ V (p, p') 2Llp' (Nip'- Nw). 
p' Bp' 

(6) 

(7) 

(8) 

The spectrum of elementary Fermi excitations 
is defined as the variational derivative of the total 
energy with respect to the number of quasiparti­
cles: 

Wnp = (6 (Ho + H1)) + ~ (6 (Ho + H1)) 6U p' • 

6Nnp Up p' 6Up' Nnp 6Nnp 

The second term, as one can easily see, is of or­
der of magnitude (1/z)(mc + mv)u2, and in the linear 
approximation in u we find: 

mv- me E ( 1)" Wnp = . + p + - Bp + up, 
mv me 

n = 1, 2. (9) 

The rearranged state is stable if min w2 
> max w1. This inequality is satisfied for u < "er­
As the calculations show, in the most interesting 
case of contact of the bands of the unrearranged 
spectrum (Eco = Ev0; in this case the rearrange­
ment of the spectrum is maximum[ 2J) we have in 
order of magnitude 

(10) 

Formula ( 10) has an obvious physical meaning: 
The state of motion disappears when the kinetic 
energy of a pair is comparable with the value of 
the binding energy. 

In the ground state N2p = 0, N1p = 1, and the 
quasiparticle current is determined by the formula 

J = 2 ~ 8wtp. 
p-m u 8P v 

(11) 

The index under the summation sign indicates that 
p- mvu runs over an elementary cell in recipro­
cal space (this follows from formula (5), according 
to which a1p = av,p-mvu far away from band ex­
trema). It is easy to find that the current ( 11), like 
the current 

2 "' ( 8Ecp + 8Evp + ) LJ - 8-(acp acp) + - 8- (avp avp) ' 
p p p 

determined in terms of the "hole" operators is 
equal to zero, i.e., just as it should be, the distri­
bution (4) is not associated with transport of 
charge and mass. 

The energy current is calculated from the for­
mula 

(12) 

and turns out to be equal to 

(13) 

where 

N . _ 2 "' < + > _ r2 A 'f, •;,.,-3 parr···- LJ acp acp - 2;2 Ll m ,~ 
p :rt 

(14) 

is the number of electrons in the conduction band, 
which is equal to the number of pairs in the case 
of nonoverlapping (for T > T c) bands; -y 1 and -y 2 
are numerical coefficients close to unity. 

Thus Q has the meaning of a transport of bind­
ing energy ( -2 .6.) by pairs moving with velocity u, 
and one can say that the state under consideration 
represents superfluid motion of the Bose conden­
sate of bound pairs with velocity u. One can say 
that the current Q brings about a thermodynam­
ically reversible heat transport that takes place at 
a zero temperature gradient. One can represent 
the mechanism of thermal conductivity as the cre­
ation of pairs at the heat outlet, their propagation 
without resistance to the point of heat supply, and 
subsequent annihilation with release of negative 
energy (-2.6.). One can estimate the critical heat 
current corresponding to the critical velocity Ucr 
with the aid of Eqs. (10), (13), and (14), keeping in 
mind that .6. is of the order of Tc: 

where Tc is expressed in degrees, m = 2mcmv/ 
(me+ m v), IDo is the mass of a free electron. For 
example, for me = mv = 10-1 m 0 and T c = 10 o K 
the current Q ~ 1 J-cm-2 sec-1• This magnitude is 
quite accessible to measurement. 

As mentioned above, Umklapp processes and 
scattering by impurities do not lead to singulari­
ties in the scattering amplitude and may be con­
sidered in perturbation theory. The effect of these 
interactions is characterized by the transition 
probability 
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The ground state with a given value of u may 
change only as a result of the appearance of ele­
mentary excitations. Such a process is accom­
panied by an increase of energy and therefore its 
probability is equal to zero. In principle, a transi­
tion without change of energy is possible to an ex­
cited state characterized by a smaller value of u. 
However, the probability for such a transition is 
macroscopically small since it leads to a change 
in the motion of the system as a whole. 

The role of the perturbation may manifest itself 
only in renormalization of the gap. For Umklapp 
processes, the order of magnitude of this renor­
malization is 

where K is the period of the reciprocal lattice, 
and Vav is a certain average interaction deter­
mined by the equation V av I:(.6./2E) = .6.. It is clear 
that 6E is always « .6.. 

In conclusion, let us consider the simplest pos­
sible experiments with regard to the observation 
of superthermal conductivity for semiconductors 
having a narrow gap. Certain semiconductors, 
which change into the metallic state under an in­
crease of temperature or under pressure, may 
turn out to be suspicious in this respect. This 
happens, for example, for certain oxides of tita­
nium and vanadium, [ 4 J and for InSb. [ SJ One can 

observe "superthermal conductivity" in the ab­
sence of a temperature gradient for small heat 
currents. In addition, as we saw above, the rear­
ranged state disappears for thermal currents 
larger than the critical current. Therefore, by 
passing a large heat current through the material 
for T < T C• one can expect the appearance of me­
tallic conductivity and the vanishing of weak anti­
ferromagnetism (if such existed[ 2J ). 

In conclusion the authors express their deep 
gratitude to I. E. Dzyaloshinskil for discussions, 
as a result of which the present article appeared. 

1 L. V. Keldysh and Yu. V. Kopaev, FTT 6, 2791 
(1964), Soviet Phys. Solid State 6, 2219 (1965). 

2 A. N. Kozlov and L. A. Maksimov, JETP 48, 
1184 (1965), Soviet Phys. JETP 21, 790 (1965). 

3 N. N. Bogolyubov, V. V. Tolmachev, and D. V. 
Shirkov, Novy'f metod v teorii sverkhprovodimosti 
(New Method in the Theory of Superconductivity), 
AN SSSR, 1958. 

4 C. H. Neuman, A. W. Lawson, and R. F. Brown, 
J. Chern. Phys. 41, 1591 (1964). 

5 G. Busch and M. Schneider, Physica 20, 1084 
(1954). 

Translated by H. H. Nickle 
20 


