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A quantum distribution function is derived which describes the multiple scattering of a beam 
of charged particles as a function of the deflection angle and the transverse displacement of 
the particle. In the classical limit the formula is identical with Fermi's classical distribution 
function for multiple scattering. The possibility of measuring quantum effects in multiple 
scattering depending on the properties of the measuring apparatus is investigated. 

1. INTRODUCTION 

THE classical distribution function for charged 
particles in matter with respect to the direction of 
momentum, the distance traversed, and the trans
verse displacement owing to multiple Coulomb 
scattering was obtained by Fermi as late as 1940.[1] 
From the quantum mechanical point of view this 
distribution function is valid for distances which 
exceed many times the dimensions of the wave 
packet describing the particle. It is therefore of 
interest to investigate the form of the distribution 
function for distances comparable with the dimen
sions of the wave packet, where the classical pic
ture is inadequate. This problem can be solved 
with the help of the quantum mechanical kinetic 
equation of Migdal, [ 2 J which has been developed 
further in papers devoted to the study of the effect 
of multiple scattering on bremsstrahlung and pair 
production at high energies. l 3J However, using 
this method in our case would be a rather compli
cated procedure because of the necessity to take 
a wave packet for the wave function of the particle 
before its entry into the medium (if the impinging 
particle is described by a plane wave, the distri
bution function is independent of the transverse 
displacement). Therefore, we shall solve our 
problem by the simpler method of the quantum 
mechanical theory of multiple scattering formu
lated earlier by the authors. l 4 J 

The method consists in solving the Schrodinger 
equation for the elastic scattering of a particle on 
a system of many scatterers in the approximation 
where the wave function depends multiplicatively 
on the coordinates of the scatterers. The distribu
tion function is obtained by averaging the density 
matrix in the mixed representation over the 
atomic coordinates. The resulting distribution 
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function coincides in the classical limit with the 
classical distribution function of Fermi. The use 
of a quantum mechanical distribution function al
lows one to point out a number of quantum effects 
in multiple scattering and to investigate the de
pendence of these effects on the properties of the 
measuring apparatus and on the original form of 
the wave packet. 

The results obtained can be of interest in con
nection with the known method of measuring the 
energy of a particle by the angle of multiple scat
tering, and also in connection with the experimen
tal indications of deviations from the usual theory 
of multiple scattering at high energies. l SJ 

2. WAVE FUNCTION OF A PARTICLE IN 
MATTER 

Let the wave function of a particle in the me
dium satisfy the equation ( 1i. = c = 1) 

(il + Po2)¢(r) = 2EoU(r)¢(r), (2.1) 

where for relativistic particles with spin 0 and 1/ 2 

E5 = p~ + m2 » U2 and for nonrelativistic particles 
E0 ~ m, in which case it coincides with the Schro
dinger equation. The external potential in which 
the particle moves is composed of contributions 
from all atoms of the medium: 

U(r)= ~ Uo(r-Ra). (2.2) 
a 

We shall seek the solution of (2.1) in the form 

'¢p, ( r) = eip,r eS (r), (2.3) 

which after substitution in (2.1) leads to an equa
tion for S: 

2ip0VS + ilS + (VS) 2 = 2Eo ~ Uo(r- Ra). (2.4) 
a 
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The usual assumption of multiple scattering 
theory is that the particle interacts with each par
ticle independently of the other particles. In this 
case the dependence of the wave function of the 
particle on the coordinates of the atoms must be 
multiplicative. This means that the phase of the 
wave function S(r) must be a sum of phases, 

S(r)~ ~St(r-Ra). 
a 

This approximation corresponds to neglecting 
terms of the type 

~ ~ S2(r-Ra, r-Rb). 
a b.Pa 

We use this approximation in solving (2.4), retain
ing only a single sum over the atoms and discard
ing terms with multiple sums; (2.4) then reduces 
to 

a 

- 2EoUo(r- Ra)} = 0. (2.5) 

This equation must be satisfied for arbitrary val
ues of Ra, which implies that each term of the 
sum must be zero: 

2ipoVSi(r-Ra) + L1Si(r-Ra) + (VS!(r-Ra)) 2 

-2E'U( R) (2.6) - oor- a. 

Equation (2. 6) coincides with the equation for 
the wave function of the one-center problem; 
therefore 

(2.7) 

is the wave function of the one-center problem with 
the same boundary conditions. Let us introduce the 
notation 

then the scattered wave in the one-center problem 
for large distances has the form 

lim eip,r (' d3qj ( q) eiqr - - ( - _!__ ) eiPor 
r-+00 .) (2:rt2) (q2 + 2poq _ io) - I Po r Po -r-

(2.9) 

(the asymptotic form of the integral has been in
vestigated in [SJ). It follows from (2.9) that f(q) is 
the amplitude for the scattering of a particle on an 
isolated atom and hence, the quantity S1 (r - R) can 
be found if the amplitude for one-center scattering 
is known. This circumstance guarantees the use
fulness of the theory described below if the one
center scattering amplitude is known. 

Knowing the wave function of the particle in 

matter, we can obtain the probability distribution 
for any quantity characterizing the particle. In an 
amorphous medium only the calculation of quanti
ties averaged over the distribution of the atoms is 
of interest. The average over the distribution of 
the atoms reduces to the average of expressions 
of the form 

< exp( ~ Qa)) = (eQa)N =( 1 +~ < ~ (eQa -1)) r. 
a a 

The sign ( ... ) indicates averaging over the atomic 
coordinates; we assume that the coordinates of the 
atoms are independent. When the number of atoms, 
N, goes to infinity, we have the formula 

( exp ( ~ Q a ) ) = exp ( ~ ( eQ a - 1) ) (2.10) 
a a 

(a more detailed consideration of the averaging 
process can be found in [4 J). 

It should be noted that the wave function of the 
particle in the medium 

'ljJ (r, t) = exp (ipor- iE0t) exp ( ~Si(p0, r- Ra) ) (2.11) 
a 

corresponds to a completely definite boundary con
dition: before the entry into the medium the state 
of the particle is described by the plane wave 
exp (ip0 • r - iE0 t). The solution to the Schrodin
ger equation corresponding to another boundary 
condition can be obtained by a superposition of the 
solution (2.11), for example, 

'ljl(r, t) = ~ d3p0a(p0)exp(ip0r- iE0t) 

X exp[ ~ Si(Po, r-Ra) J, (2.12) 
a 

where the wave function of the particle before the 
entry into the medium has the form 

~ d3poa (Po) exp (ipor- iEot). 

3. QUANTUM DISTRIBUTION FUNCTION 

In order to compare the results of the quantum 
theory of multiple scattering with the classical 
distribution function, it is convenient to formulate 
the results of the quantum theory in a form which 
is as close as possible to the method of the classi
cal kinetic equation. As is known, the quantum 
analog to the classical distribution function is the 
density matrix in the mixed representation: [ 1 J 

J(p,r, t) = (2:rt)-3 ~ d3r'e-ipr' ( 'ljl"( r-: , t) 

X'ljl(r+;',t)). (3.1) 
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The quantum distribution function is not a di
rectly observable quantity and is, in general, not 
positive definite. Directly observable quantities 
are the average values of physical quantities, 

Q = ~ d3pd3r Q(p, r)f(p, r, t) (3.2) 

or the probability densities of the momenta or the 
coordinates, 

w(p)=~ d3rf(p, r, t); w(r)= ~ d3pf(p, r, t); 

W(P..L, r11) = ~ d2rJ..dPllf(p, r, t). (3.3) 

The quantum distribution function (3.1) must satis
fy the inequality 

~ d3rd3pf(p, r, t)f(p, r, t) ~ 1. (3.4) 

The form of f(p, r, t) can in general be deter
mined in two ways. In the first method an equation 
for f(p, r, t) is derived from the Schrodinger 
equation for the wave functions; this is the quan
tum mec~anical kinetic equation, which is to be 
solved. The second method, used below, consists 
in first solving the Schrodinger equation in the 
corresponding approximation and then calculating 
the quantum distribution functions with the help of 
(3.1). This method of calculating the distribution 
function was used in [ 4J. We calculate in this 
fashion the quantum distribution function for the 
case where the state of the particle before entry 
into the medium is described by a wave packet 
(p 1 • Po = 0) 

¢(r, t)= ~dEYJ 1 (E-E0 ) ~ d2pJ..Y)z(P..L)eiPr-iEt. (3.5) 

It follows from the discussion above that the 
wave function of the particle in the medium corre
sponding to the initial condition (3.5) has the form 

¢ (r, t) = ~ dEY)!(E- Eo) ~ d2pJ..TJz(PJ..) 

X exp[ipr-iEt+ ~ S1(p,r-Ra) J. (3.6) 
a 

Substituting this expression in (3.1) we obtain after 
averaging over the atomic coordinates, using 
(2.10)' 

f(q, x, t) = (2n)-3 ~ d3ydEdE'd2pJ..d2PJ..'Y)!(E- Eo) 

X 1']1• (E'- E0) TJz(PJ..)'YJz* (PJ..') exp{- iyq- i(E- E') t 

+ i(p- p')x + i p ~ p' y + F(x, y; p, p')}, 

d3qf ( q, E) eiq(X+Y/2) < ~ e-iqRa > 
F(x, y; p, p') = ~ a 

(2n2) (q2 + 2pq- ib) 

d3qf* ( q, E') e-iq(X-Y/2) < ~ eiqR4 ) • 

+ ~ a 
(2n2) (q2 + 2p'q + ib) 

d3qd3f( f ( q, E) r ( q' E') eiq(X+Y/2)-iq(X-Y/2) < ~ e-i(q-q')Ra) 

+~ a 
(2n2) 2 (q2 + 2pq- ib) (q2 + 2p'q + ib) 

(3. 7) 

Using (3. 7), we can obtain the distribution of the 
charged particles in the medium with respect to 
all three coordinates and the transverse momenta: 

(3.8) 

We assume that the relative spread of the en
ergies in the wave packet is small and that the ini
tial spread of the transverse momentum has Gaus
sian form 

'l']z(PJ..) = ro2n-1 exp (-PJ..2ro2), (3.9) 

where r 0 is the mean transverse spatial dimen
sion of the packet. After the integration over dt 
and dq11 in (3.8), we obtain easily 

f(z, rJ.., qJ..) = const ~ d2pJ..d2kJ..d2YJ.. 

X exp [ - iqJ..Y J.. - 2k2ro2 - ~ r02 J 

X exp[ ipJ..XJ.. + ikJ..YJ..- ikJ..PJ.. ;
0 
1 exp[L1 + Lz +La], 

L1 + Lz = - nocrtL. 

~ [ .SJ..PJ..(z-~)Jdt 
X j exp - ~ "'' 

0 p 
L = min(L, z). (3.10) 

Let us now determine the angular distribution 
in space of the charged particles, assuming that 
the deviations from the initial deflection are small. 
In this case the full angle of deflection is the cumu
lative effect of small deflections at each scatterer 
and the momentum transfer to the individual scat
terer is much smaller than the total momentum 
transfer. This permits a considerable simplifica
tion of the expression for L3• Assuming s1 • Yl 
« 1, we find 
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- ~Y..L2 - ap..t_2 + VY..LP..L. 

<Oo2>= Po-2 ~ q..L2I/(q..t_) l2d2q_1, (3.11) 

Substituting ( 3.11) in ( 3.10) and performing the 
necessary integrations, [ 81 we obtain 

const 
f(z,r..t_,q..t_)= 4r62(4AB-C2) 

{ B A 
X exp - r ..L24AB- cz - q..Lz 4AB- cz 

+ q..t_r..t_4ABC- cz }; 

C=--z-
4poro2 

(3.12) 

The function f(z, r 1• p8)(q1 = ¢) is the quan
tum analog of the classical Fermi distribution 
function. [ 11 Moreover, in the limit tr- 0 the dis
tribution function ( 3.12) coincides with the classi
cal distribution function. [1] We emphasize that, 
as already noted, the quantum distribution function 
is not a directly observable quantity. Therefore it 
is not meaningful to compare ( 3.12) with the clas
sical distribution function. 

It is interesting to compare, for example, the 
spatial distribution of the particles at the depth z 
independently of the angle. In the classical theory 
it is given by 

_!_ v~ (~)% ( 2E) [ _ 3E2 LradY2 ] 
2 E exp E 2 3 • :n: z 8 8 z 

i.e., by a Gaussian distribution in which the mean 
square deviation increases like the cube of the 
traversed depth z. The integration of ( 3.12) over 
q1 also yields a Gaussian distribution, but the 
mean square deviation depends on z in a much 
more complicated fashion: 

Finally, we can compare the classical result 
with the experimentally observed distribution 
function f(z, rf>, q1), which can be obtained from 
f(z, r1, q1) by averaging over the region of sensi-

tivity of the measuring apparatus, i.e., with the 
help of the relation 

f(z, r.L<o>, q.L) = ~ d2x..t_P (x.L- r..t_<0l)f ( q..t_, z, X..t_), ( 3.13) 

where P(x 1 - rf>> is a function defining the sensi
tivity of the detector [sometimes P(x 1 - r~>) is 
called the transmission of the aperture]. With good 
accuracy P(x 1 - rT) can be approximated either 
by the step function 

{ const, 
P(x..L- r.1.<0>) = 

0, 

or by the Gauss function 

lx.L- r..t_(O)I:::::;:; a 

lx..L- r.L(OJI >a , (3.14) 

P(x..t_-r..t_(0l) =lconstexp [-(x..t_-r..t_(0l) 2a-2], (3.14a) 

where a is a characteristic dimension of the aper
ture. 

With the help of the quantum distribution func
tion one can determine any integral feature of the 
multiple scattering of charged particles. We illus
trate this by the example of the mean square of 
the scattering angle on the axis of the beam. Using 
the expression for the distribution function for 
charged particles on the axis of the beam, 
f(z, 0, q1 ), we easily find 

zcz } <82) = p0-2{4B __ a_ e-a'/4A [1 _ e-a'/4A)-1 . 
4A. 2 

(3.15) 

It should be noted that for a - oo 

(3.16) 

which is in complete agreement with the results 
of the classical multiple scattering theory[ 91 for 
11-0. On the other hand, for a- 0, 

{ 4AB-C2 cz } 
<8)2 = Po-2 +- a2 A 8A 2 • 

(3.17) 

The functions (e 2) = cf>a(z) for different apertures 
lie between the straight line ( 4.16) and the curve 
( 3.17). 

Thus the function f(z, r1, q1) provides a com
plete quantum mechanical solution of the multiple 
scattering problem. 
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