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In the framework of the Wightman axiomatic field theory, each physical theory implements a 
representation of the algebra A, the elements of which are finite sequences of functions 
(~; g1(x); ... ; gn(x1 ••• xn); 0; 0; ... ). In this paper we consider the subalgebra A<+> of the alge­
bra A, consisting of elements of the form (go; 0; g2(x1x2); 0; g4(x1x2xax4); 0; ... ). One of the repre­
sentations of this subalgebra is constructed explicitly. An interesting peculiarity of this repre­
sentation is the fact that the underlying Hilbert space contains only the vacuum and the two­
particle asymptotic states, and does not contain asymptotic states with a larger number of 
particles. 

1. INTRODUCTION 

RECENT years have marked a successful devel­
opment of the axiomatic direction in quantum field 
theory. Within this framework the physical theory 
is constructed as a representation theory for an 
abstract algebra by means of an algebra of opera­
tors on a Hilbert space. Each such representation 
is defined by a multiplicative positive functional 
on .the original algebra. 

Let us consider this scheme in more detail. Let 
A be a *-algebra which is at the same time a topo­
logical space. We denote by A' the space of linear 
continuous functionals over A. A functional <P E A' 
is called multiplicatively positive (or briefly a 
state) if cp(a +a)~ 0 for all a E A (here a+ is the 
adjoint of the element a under the involution). 

Each state generates a representation of the 
algebra A as an algebra of operators Rcp(A) on a 
Hilbert space Hcp· In order to construct the space 
H<P and the algebra Rcp(A) from the state <P one 
defines the subspace rlcpC A: 

rlrp = {a E A: <p(a+a) = 0}. 

Then one defines the quotient space L <P = A/rlcp. 
The elements of L <P are equivalence classes 
[a]cp of elements of A, two elements a1, a 2 E A be­
ing equivalent [ad <P = [a2] <P if and only if a1 - a2 
E Q<P. Then the state <P defines a nondegenerate 
inner product on L<P: 

pre-Hilbert space L<P with respect to the metric 
defined by this inner product. Defining the opera­
tors Rcp(a) by Rcp(a)[blcp = [ablcp. it is easy to see 
that the family Rcp(A) of all operators Rcp(a) 
yields the required representation of the algebra A. 

Let us now assume that the state (functional) <P 
is invariant under some group tT of automor­
phisms of the algebra A, i.e., cp(a7 ) = cp(a) (where 
T is an arbitrary element of the group tT and a 7 

is the result of the action of this element on a E A). 
Then one can define a group of unitary operators 
on Hcp: U 7 [alcp = [a7 ]cp, which obviously imple­
ments a unitary representation of the group of 
automorphisms iff. 

This construction is sufficiently general. The 
difference between the two fundamental approaches 
of Haag and Wightman, respectively, consists in 
the selection of the fundamental algebra. 

In Haag's formalism[ 11 the algebra A is a C*­
algebra, i.e., a *-algebra in which the topology is 
defined by a norm satisfying the conditions 

lia+il =· llall; llabll ~ llall·llbll; lla+all = llall 2, 

and the algebra is complete in this norm. 
In the Wightman formalism[ 2J the fundamental 

algebra has a much more complicated structure. 
The elements of the algebra are finite sequences 
of functions 

where xz = (xz0; Xz), ~ is a complex number, 
gk(xi> ... Xk) are functions belonging to the space 

The Hilbert space Hcp is defined by completing the S4k of infinitely differentiable functions of 4k var-
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iables, decreasing as Xi- oo faster than any in­
verse power. The multiplication 

k 

(gh)k(x, ... xk) == ~ gt(x, ... Xt)h~t-t(Xt+l· .. X~t) 
l=O 

and involution (g+)k(x1 ... xk) = g(xk ... x1) are so 
chosen that any physical theory which admits the 
introduction of a field cp (x) generates the algebra 
of (distribution valued) field operators 

k 

a(g)=~ ~ ... ~ dx1 ... dxkgh(x, ... xJt)cp(x!) ... cp(xh), 
k=O 

realizing a representation of the algebra A. 
Each functional W over the algebra A is given 

by the sequence of Wightman functions: 

W == (Wo; W,(x!); ... ; Wn(X! ... Xn); ... ), 
il. 

W(g)= ~ ~ ... ~dx1 ... dxhWh(x, ... xk)gh(x, ... xJt), 
k=O 

which in addition to the requirement of multiplica­
tive-positiveness satisfy some additional condi­
tions imposed on the basis of physical considera­
tions. 

The description of states (multiplicatively­
positive functionals) on such an algebra is a com­
plicated mathematical problem. At present only a 
few examples of states are known and all corre­
spond to the physically trivial case of noninteract­
ing fields. Therefore any example of a nontrivial 
functional, even if it does not satisfy all the re­
quirements imposed on a Wightman functional, but 
sufficiently close to it in mathematical structure, 
will command a certain amount of interest. 

2. CONSTRUCTION OF THE MODEL AND ITS 
PHYSICAL INTERPRETATION 

We shall consider the subalgebra A<+> of A. 
By definition A<+> consists of those elements of A 
for which only the components with an even sub­
script are different from zero, i.e. ~; g2(x1x2); 
g4(x1 ... x4) etc. 

Taking as a starting point not the algebra A, 
but A<+>, the condition of multiplicative positive­
ness will be weakened and the class of states will 
be correspondingly enlarged. In this case one can 
construct a curious example of a physically non­
trivial state. The peculiarity of this functional is 
the fact that the corresponding Hilbert space con­
tains only the vacuum and two-particle asymptotic 
states and does not contain states with a higher 
number of particles. 

The model is defined by two (generalized) func­
tions: cp2(x1x2) and cp 4(x1x2x3x4) satisfying the re­
quirement of hermiticity (i.e. such that Cf2(x1x2) 

= cp2(x2x1) and cp 4(x1x2x3x4) = cp4(x4x3x2x1)). The 
functions W~+l, W~+)(x1x2), ... , W~i;_>(x1 ... Xzn) 
which make up the functional w< +> are constructed 
as follows: 

Wo<+J = 1, W2<+J(x1x2) = Cfl2(x1x2), 

wit) (X!, .. X2n) = W~;;>-4(X1 ... Xzn->)Cfl>(Xzn-3. · · Xzn) 

+ W~;{-z(X!, .. Xzn-2)(jl2(Xzn-!X2n) 

+ Cflz(X!Xz) wJ~~2(X3 ... X2n). 

Let us analyze the properties of such a func­
tional. We introduce the notation 

g2~J_2 (x1 ... X2n-2) = ~ ~ g2n (x, ... X2n) {jl2 ( Xzn-!Xzn) dxzn-1dX2n, 

(4) ) g2n-4 ( x, ... X2n-4 

= ~ ... ~ g2n ( x, ... Xzn) {jJ4 ( X2n-3 ... X2n) dx2n-3 ... dx2n· 

· 1 t· f w<+ > ·t · Making use of the recurswn re a wn or 1 IS 

easy to see that for any hE A<+> 

W<+l(h+gf~) = W<+l(h+g~~-2 ) + W<+l(h+g~~~-•), 
W<+> (g2n +h) = W<+> (gi~~2h) + W<+> (g~~~h). 

Here and in the following we have adopted the 
simplified notation, denoting by the same symbol 
g2n both the function g2n(x1 ... x2n) and the element 
of the algebra A<+> with the only nonvanishing ele­
ment g2n (i.e. (O; 0; ... ; 0; g2n(x1 ... X2n); 0; 0; ... )). 

These relations show that the element gzn, con­
sidered as the argument of the functional w<+>, is 

• (2) (4) 
completely equivalent to the sum gzn-2 + g2n-4· 
Going over to the functions 

(2, 2) ) 
g2n-4 ( X1 ... X2n-4 

= ~ ~ g~~-2 (X! ... X2n-2) Cfl2 (x2n-3X2n-2) dx2n-3dX2n-2, 

gf,;_~6 ( X1 ... X2n-6) = ~ ... ~ g~~-2 ( X1 ... X2n-2) 

X Cfl> ( X2n-5 . .. X2n-2) dx2n-5 ... dx2n-2; · · · 

and repeating the same procedure a sufficient num-
- A<+> ber of times, one arrives at an element g E 

which has only the first two functions g0 and 
g2(x1x2) different from zero and which is com­
pletely equivalent to the initial element g2n if re­
garded as an argument of the functional w<+ >. 
Consider, for example, the element !56· It is equiv­
alent to g42> + g~4 >. The element g~2 > is in turn 
equivalent to gF· 2> + g62•4>. Consequently, the ele­
ment g6 is equivalent to the element g with the 
components: 

lo =· go<2· 4>, lz(x,xz) = g2<4>(x1x2) + gz<2· 2>(x,x2). 

Therefore a necessary and sufficient condition 
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for the multiplicative positiveness of w<+ > con­
sidered as a functional over the algebra A<+> is 
the requirement w<+>(g+g)?: 0 for all elements g 
of the form g = (g0, g2(x1x2), 0, 0, ... ). Since 

W<+>(g+g) =I go+~~ g2(x1x2)CJl2(x1x2)dx1dx2i 2 

+ ~ ... ~ (JJ4(x1x2xax4)g2(x2x1)g2(xax4)dx1 ... dx4, 

a necessary and sufficient condition for the multi­
plicative positiveness of w<+> will be the posi­
tiveness of the function cp4, i.e. non-negativeness 
of the last term in the preceding equation. We as­
sume that this condition is satisfied below. 

One can then construct in the usual manner the 
Hilbert space and the representation of the algebra 
A<+>. The set L c H is hence exhausted by ele­
ments of the form (g0, g2(x1x2) 0, 0, ... ) since all 
other elements depend linearly on elements of this 
form. 

Until now no restrictions have been imposed on 
the functions cp 2 and cp4, except hermiticity and the 
positiveness of cp 4• Imposing relativistic invari­
ance on cp 2 and cp 4 one can construct in the usual 
manner unitary representations of the Poincare 
group on H. 

In order to give physical meaning to such a 
functional, one can consider an asymptotic con­
struction. In order to construct the asymptotic 
states and the S-matrix, one subjects the functions 
W~ + > and Wi + > to the same restrictions that are 
imposed on the Wightman functions. [ 3• 4J The only 
difference consists in the fact that the set of 
asymptotic states is exhausted here by the two­
particle states and the vacuum. Therefore such a 
functional describes only two-particle scattering 
processes. 

If there exists a field theory described by the 
functional 

one can set 

<jl2(x1x2) = W2(x1x2); 
cp4(x1x2xax4) =' W4(X1X2Xax4) - Wz(x1x2) W2(xar,) 

and reconstruct the functional w<+>, which obvi­
ously describes two particle scattering in the 
same manner as the underlying field theory. In 
this case the S-matrix will not be a unitary opera­
tor (even if the S-matrix of the underlying field 
theory is unitary), since the probability of transi­
tion for a two-particle state into a two-particle 
state is less than one (transitions to states with 
three or more particles are possible). 

In the case of relativistic quantum mechanics 
(i.e. a relativistic theory without creation and an­
nihilation of particles) the S-matrix must be uni­
tary. A sufficient condition for the unitarity of the 
S-matrix is the completeness of the set of asymp­
totic states. [ 4J One can use such a scheme also 
for the formal description of nonrelativistic two 
particle scattering. In this case, one must of 
course reformulate the requirements on cp 2 and 
cp4 and the asymptotic conditions. 

In conclusion we note that in the same manner 
as any multiplicative positive functional (state) W 
over A generates a family of field operators cp(x) 
such that 

Wn(Xi ... Xn) = (OI!Jl(Xi) ... cp(xn) IO), 

any state w<+> on A<+> leads to a family of opera­
tors <P(x1x2) depending on two variables, such that 

w~t> (xi ... X2n) = (0 I <D (xix2) ... <D (X2n-1X2n) I o>. 
I would like to use the occasion to thank L. V. 
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