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A four-dimensional formalism is employed to determine the electromagnetic field strength 
and the induction produced by arbitrary sources. The field is found in a medium with given 
electric and magnetic permeability tensors. The formulas are valid also for a uniformly 
moving medium. 

1. FOUR-DIMENSIONAL STATEMENT OF THE 
PROBLEM 

WE shall consider the electric current density 
I(r, t) and the electric charge density p(r, t) to be 
given. It is required to find the electromagnetic 
field, that is, the field intensities E(r, t) and B(r, t) 
and the inductions D(r, t) and H(r, t). The three­
dimensional statement of the problem leads to 
equations that are difficult to visualize; therefore, 
even if one seeks a solution in a medium at rest, 
it is more convenient to transform to the four­
dimensional statement of the problem, inasmuch 
as the equations are then much clearer. 

Since the connection between the inductions 
and the field strengths ceases to be an operator 
relation only when this connection exists between 
the Fourier amplitudes of these quantities, and 
since the imaginary character figures prominently 
in the Fourier expansion, it becomes inconvenient 
to use the four-dimensional Cartesian set of co­
ordinates in which the time coordinate Xi = ict also 
has an imaginary character. We shall make use 
below of the Galilean system of coordinates x1, x2, 

x3, x0 = ct, for which the metric tensor has the 
form 

1 0 0 
0 1 0 
0 0 1 
0 0 0 

0 
0 
0 

-1 

(1.1) 

The electromagnetic field in a material medium 
is described by two antisymmetric 4-tensors of 
the second rank: the field strength 4-tensor Fik 
and the induction 4-tensor cl>ik· In addition to the 
field strength 4-tensor Fik• we introduce the 4-
tensor that is its dual: 

(1.2) 

where Eiksr are the contravariant components of 
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the unitary, completely antisymmetric pseudo 4-
tensor (see, for example, [1J' Par. 83; [ 21 , Par. 
22, and the end of Par. 37), the covariant compo­
nents of which are such that 

c,iksr = -Eihsr. 

Inasmuch as F sr is a true 4-tensor then, in ac­
cord with (1. 2), Fik is a pseudo 4-tensor. 

The equations of the electromagnetic field in 
material media have the following form in the 
four -dimensional representation: 

&<Dih 4:n: . 
--=-]' ox" c ' 

oJ?ih 
ox".= 0 

(1.3) 

(1.4) 

[see, for example, [ 31 , Par. 33, Eqs. (270) and 
(271)]. Here Ii are the contravariant components 
of the 4-vector of the current density: I1, I2, I3 

form the 3-vector current density I, f = cp. Equa­
tion ( 1. 4) is satisfied if we set 

-. omihs 
F'"=--­ox• ' (1.5) 

where miks is a 4-tensor that is antisymmetric in 
all its three indices. It is seen from (1.5) that it 
is a pseudotensor. Usually, in place of miks there 
is introduced the 4-vector Ar that is dual to it, 
with the help of the relation 

(1.6) 

which is the 4-vector potential of the electromag­
netic field. Inasmuch as m iks is a pseudo 4-tensor, 
then it is seen from ( 1. 6) that Ar is a true 4-
vector. 

We note that the pseudo 4-tensor miks is deter­
mined with an accuracy up to the component 
aeiksr;axr, where eiksr is an arbitrary, com­
pletely antisymmetric pseudo 4-tensor. Indeed, by 
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substituting the pseudo 4-tensor 

m iks + _!__ E)iksr 
rh·T ! 

on the right hand side of Eq. (1.5) in place of miks, 
we obtain the pseudo 4-tensor F'ik as before, in-
asmuch as az 

---Siksr=O ax• axr 
as a consequence of the antisymmetry of eiksr in 
the indices s and r. 

Setting 

( 1. 7) 

where e is a true 4-scalar, one can show that one 
can impose a single arbitrary scalar condition on 
the components of miks (and consequently on the 
components of Ar also), which can only limit the 
arbitrariness in the selection of the 4-scalar e. 

For the determination of the 4-vector Ar, one 
must use the equation ( 1. 3), and also the connec­
tion of the 4-tensors ci> ik and F ik. In a disper­
sive medium, this connection has the form 

(1.8) 

where §~~r is a pseudo 4-tensor operator. 
The Fourier expansion yields 

<Di"(xP) = ~ cpik(ks)eikqxq d"km, (1.9) 

}'ik(xP)= ~Jik(ks)eikqxq d"km, (1.10) 

where k1o k2, ka are the components of the wave 3-
vector k, k 0 = - w I c, w is the frequency. Here 
d4km = dk1dk2dk3dko is the volume element in the 
space of the 4-vector ki, L(xP) denotes a function 
of all four components of the 4-vector; for exam­
ple, 

The connection between the Fourier amplitudes 

(1.8a) 

exists not through the operator but through the c­
number, which is a pseudo 4-tensor S~~r· 

The components of this pseudo 4-tensor in the 
fixed medium can be expressed in terms of the 
components of the 3-tensors of the dielectric con­
stants E 0'{3 and magnetic permeabilities 11 0'{3 if we 
compare the formulas 

(which connect the Fourier amplitudes of the 3-
vectors D and E, H and B) with the formula 
(1.8a), in which the components of the 4-tensors 

f sr and c,oik must be expressed by the 3-vectors 
e, b and d, h (see, for example, [ 1 J , the note on 
p. 283; [ 2J, p. 95). As a result, we get 

s"fJ··-o 
. . Ya- ' 

sao .. - 0 
.. flo- ' 

s~~ ~0 = 1/2 e"flafl;~, 

S~? ~y = 1/2B"aBafJY• (1.11) 

Here and below, the Greek indices run through the 
values 1, 2, 3 and enumerate the spatial coordi­
nates, while the Latin indices run through the val­
ues 1, 2, 3, 0 and enumerate all the coordinates of 
4-space. The first 4-tensor permeability was in­
troduced by Tamm. Expanding the 4-vector of the 
current density in a Fourier integral also, 

( 1.12) 

we obtain the following complete set of equations 
[in place of (1.3), (1.4), (1.8)] for the Fourier am­
plitudes of the quantities characterizing the field: 

rpnkk =· -i4nji I c, 

Jikkk = 0, 

rpik = s~~ ~~r. 

(1.13) 

(1.14) 
(1.15) 

2. SOLUTION OF THE SET OF EQUATIONS OF 
ELECTRODYNAMICS FOR THE FOURIER 
AMPLITUDES 

Equation ( 1.14) can be satisfied by setting 

(2.1) 

where Niks is a pseudo 4-tensor which is anti­
symmetric in all three indices and which appears 
in the Fourier amplitude of the pseudo 4-tensor 
miks introduced in (1. 5). As with m iks there is an 
ambiguity in the definition of Niks. To be precise, 
one can add Tiksrkz to Niks without changing Iik 
in the process; here the pseudo 4-tensor Tiksr is 
arbitrary and is antisymmetric in all four indices. 
This is so because Tiksrkskr = 0 as the product 
of a symmetric 4-tensor kskr and a 4-tensor that 
is antisymmetric in the indices s and r. 

One can always set 

Tiksr = Teiksr 1 (2.2) 

where T is a true 4-scalar, just as arbitrary as 
Tiksr. We introduce the 4-vector ar, which is 
dual to the pseudo 4-tensor Niks, by means of the 
relation 

(2.3) 

Inasmuch as one can add TEiksrkr with the arbi­
trary 4-scalar T to Niks without changing Iik in 
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the process, one can impose a completely arbi­
trary condition (which only limits our freedom in 
the selection of the 4-scalar T) on the component 
Niks (and consequently on the component ar). 

The quantities Tiksr, T and ar introduced 
here are the Fourier amplitudes corresponding to 
eiksr, e, and the 4-vector potential Ar. 

Substituting ( 2. 3) in (2.1), forming cpik with the 
help of ( 1.15), and using ( 1.13), we get an equation 
for the 4-potential 

On the other hand, if we denote by the symbol 
'Trs) . . ..Yik the cofactor of the four-d1menswnal deter-

minant I Trs I. then the formal solution of the set 
(2.4) is 

. . (Trs) 
4n 7'11' il< 

a,=-~jTr~· 

Inasmuch as the 4-vector ak differs from zero, 
we must also have, if Eq. (2.12) is correct, 

.,·nr<Trs) 0 
7 Tik = . (2.13) 

where 

(2.4) Direct calculations confirm the correctness of Eqs. 
(2.12) and (2.13). 

Since the expression mentioned above for a is 

is a true 4-tensor. 
Here we have introduced the 4-tensor 

(2.5) seen to be indeterminate, of the type 0/0, it is then 
seen that it is impossible to solve the set of equa­
tions (2.4) without imposing an additional condition 
on the components of the 4-vector ai. We spoke of 

(2.6) this earlier. We now subject the 4-vector ai to the 

Inasmuch as the following relation, similar to 
(1.2), holds between the mutually dual 4-tensors 
f"ik and fik: 

(2.7) 

we see, substituting this in (1.15) that the 4-tensor 
introduced in (2.6) is the connection between cpik 
and fmn: 

(2.8) 

The expressions for the components of the 4-tensor 
Rikmn in terms of the components of the electric 
and magnetic 3-tensors have the form (in the me­
dium at rest) 

Ra~yo =' 0, Ra~ycr = 10a~v 11:;~\:'-"~", 

RaO~y = 0, Rao~o = -e"'~. 
(2.9) 

We note that, since the 4-tensor Rikmn is anti­
symmetric in both the first and the second pair of 
its indices, then it follows from the definition of 
the 4-tensor Tin of (2.5) that 

(2.10) 

Hence (and also directly from (1.13) by virtue of 
the antisymmetric character of cpik) 

jiki = 0, (2.11) 

which expresses the law of conservation of elec­
tric charge in terms of the Fourier amplitudes. 

It must be expected from (2.11) that the four 
equations (2.4) are not independent, but this in 
turn must mean that the determinant I TikI , con­
structed from the components of the 4-tensor Tik, 
has the value 

I Til'i =0. (2.12) 

condition 

Piai = 0, (2.14) 

where pi is a 4-vector which can depend only on 
the permittivity and permeability and on the wave 
4-vector ki. By virtue of (2.14), regardless of the 
nature of 4-vector Qi, we have the identity 

QiPkah = 0. 

(It is seen from what follows that the solution for 
ak does not depend on Qi.) Combining this identity 
with Eq. (2.4), we obtain 

(Tik + QiPh)ah = -4rr,ji f c. (2.15) 

The solution of the set (2.15) is 
. . (Trs +Q' P') 

4n 7'11' ik 

ak = - c I rr• + QrP• I , (2.16) 

where the determinant in the denominator is com­
posed of the four-dimensional matrix Trs + Qrps, 
and there is in the numerator the cofactor of this 
determinant, corresponding to the element with in­
dices i and k. 

Calculations lead to the following expression 

(2.17) 

where V is a 4-scalar having the form 

V = ~ kaRabcdecdnmkpRpqmgkgEqbsrkzRlsnr. 
4! 

(2.18) 

If we carry out the summation in (2.18) and use the 
values of the components from (2. 9), then, after 
simple but tedious calculations (which are omitted 
here), an expression is obtained for the 4-scalar V 
(in the medium at rest): 



62 A. S. VIGLIN 

V = ko"l ga~ I+ ko2 (ga!laB-!P~- rooga~!laB-1) 

+roo ka!la~k~ 
I ~taB I . (2.18a) 

Here IEaf:lJ and ltP/31 are determinants com­
posed respectively of the components of the 3-
tensors Ea{:l and J1 a{3, 

pa = kBE~a, ga = ga~k~, roo= kaEaBkB. (2.18b) 

For an isotropic medium at rest, 

8 aB =• 8ga~, 11a~ = 11ga~, 

therefore, 

-1 1 !laB = -- ga~, pa = ga = Eka, roo= ck2• 
l.l. 

Substituting these expressions in (2.18a), we get 
for the isotropic, fixed medium, 

(2.18c) 

The 4-tensor Gik which enters into (2.17) is 
expressed in the following fashion: 

(2.19) 

In the fixed medium, the components Gik are ex­
pressed in terms of the electric and magnetic 3-
tensors 

Gi>< = ko2'1i'i><<•> + k;p"f-L">< -1 

- roof-Li><-1 + 1/2 (!1il2-1p12kx- k;f.Lxl2-1p"), 

G;o = 1/2ko(k;E"~f1 12~-1 - f1j 12- 1p"), 

Gox = 1/2 ko [ kxB12~f1 12~ -1 - f-L><a; -1 p12 

+ 2 (p"f112>< -1 - g/2[112>< -1) ]. (2.19a) 

In (2.19a), in addition to the notation which appears 
in (2.18b), we have 

which is the cofactor of the determinant I Ea{:l I 
corresponding to the element E a{:l. 

As is seen from (2.19), and more explicitly 
from (2.19a), the 4-tensor Gik is generally asym­
metric. For an isotropic stationary medium, the 
components Gik take the form 

Goo= k2f!l2, 

G;x = 8 [ k:x + ( ko2B- ~) g;,.], Gox = Gxo = : kokx, 

(2.19b) 

from which it is seen that in the isotropic medium 
the 4-tensor Gik is symmetric. 

It follows from (2.17) that in the stationary field 

(ko = 0), the Fourier-amplitude of the scalar po­
tential 

4n jiG;o 
ao=---­

c v 

does not depend on the additional condition, since 
the component containing the 4-vector pi drops 
out. The same thing can be said about the scalar 
potential Ao. 

It is not difficult to establish the fact that the 
solution of (2.17) satisfies the condition (2.14). The 
4-vector pi itself plays a purely auxiliary role: by 
its means we can avoid the difficulty presented by 
the fact that the solution of the set (2.4) leads to 
an indeterminacy. In the expression for the 4-
tensors of the field strengths and inductions, as is 
pointed out below, pi does not appear, but rather 
the expression for the 4-potential Ai found from 
Fik. We find the Fourier amplitude of the 4-tensor 
£ik if we substitute the expression for ~ from 
(2.17) in the formula 

which is obtained upon substitution of (2.1) into 
(2. 3). Here the component in ar which is propor­
tional to kr drops out, since E iksrkrks = 0, and 
we get the formula 

(2. 20) 

Forming cpik by means of (2.15) and using the 
definition (2.6), we find 

(2. 21) 

Equations (2. 20) and (2. 21) give a solution of the 
problem set up for the Fourier amplitudes of the 
4-tensors of the field strengths and inductions. 

3. FIELD STRENGTHS, INDUCTIONS AND 
POTENTIALS 

To obtain the field strength 4-tensor :Fik, it is 
necessary, in accord with (1.1), to multiply both 
sides of Eq. (2.20) by eikqxq and integrate over 
the space of the 4-vector ki. Moreover, if were­
verse the expansion of ( 1.12) 

jn (k;) = (2~) •lm]'' (Xm) e-ikqxqd<Xm, (3.1) 

we then obtain 
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where xP is the coordinate of the observation 
point and xm is the source point. 

In the same way, we get the following 4-tensor 
of the induction from (2.21): 

. 4:rt I 
<l>'"'(xP) =----.) d4XmJn(Xm) 

c(2:rt)" xm 

X __ JRiksr kG eikq(xq-Xq) ~ d4k 
V s nr . 

kf 

We note that 

Therefore, instead of (3.2), we can write 

a Jf'ik(xP) = 8 iksr __ 
ax• 

(3.3) 

X [ -~ ~ d4XmJn(Xm) ~ Gnr eikq(xq-Xq)d"kt]. 
c(2n:) 4 m k, V 

x (3.2a) 

On the other hand, substituting (1.6) in (1.5), we 
find 

-·· .• 8Ar 
F'~ = e'~sr --. ars (3.4) 

The components of the 4-tensor Fik that differ 
from zero on the basis of (3.4) are expressed in 
the form 

- • iJAv F(L0 = B(L = e(L~v --. 
iJxfl 

(3.4a) 

Comparing ( 3. 4) with (3. 2a), we find that the 4-
vector potential at the point of observation can be 
computed by the formula 

4:rt ~ ~ G Ar(xP) =---- d4XmJn (Xm) ~ eikq(xq_Xq)d"kt. 
c(2n:) 4 V 

xm k 1 (3.5) 

In the same way, the 4-tensor of the inductions 
(3.3) can be written in the form 

iJLik• 
(l>ik = -­

ox• ' (3.6) 

where the 4-tensor Liks is determined by the 
formula 

Li"'•(xP)= -~I d4XmJn(Xm) 
c(2:rt) 4 .l 

xm 

(3.7) 

Formulas ( 3.4) -( 3. 7) also give a solution for a 
uniformly moving medium. 

The application of the general formula ( 3. 5) to 
the stationary case of a fixed medium leads to the 
expression for the scalar potential: 

<D(r) = le:fll'j [e"'(l-1 (x"'-X"')(xfl-X13W''•p(R)dR 
R (3.8) 

and to the expression for the vector potential: 

1 
Av(r) = c 1-'-;! I f..t~crl'i• 

X~ [~-t;:-~ (x~- X'") (xv- Xv)]-'1•/(L(R)dR, (3.9) 
R 

which were obtained previously[ 5• 61 by the direct 
solution of the stationary field equations. 

Thus one can assume that the general formulas 
obtained above have withstood one of the possible 
tests. 
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