
SOVIET PHYSICS JETP VOLUME 23, NUMBER 1 JULY, 1966 

NONLINEAR AMPLIFICATION OF LIGHT PULSES 

N. G. BASOV, R. V. AMBARTSUMYAN, V. S. ZUEV, P. G. KRYUKOV, and V. S. LETOKHOV 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor July 31, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 50, 23-34 (January, 1966) 

The passage of a powerful light pulse through an optical quantum amplifier operating under 
saturation conditions is investigated theoretically and experimentally. It is shown that during 
nonlinear amplification the pulse peak moves with a velocity which considerably exceeds the 
velocity of light, the duration of the pulse remaining practically unchanged. In order to de­
crease the pulse duration during nonlinear amplification, the slope of the incoming pulse front 
should be increased. This is realized in the experiments by cutting off of the leading front 
with the aid of an additional shutter. The duration of the pulse with such a front was made as 
low as 4. 7 nsec during nonlinear amplification. 

1. INTRODUCTION 

THE desire to obtain light pulses with maximum 
energy and power leads unavoidably to use of opti­
cal quantum amplifiers operating in the nonlinear 
mode connected with the saturation effect. [ 1J It 
had been expected[ 2- 5J that nonlinear amplification 
would result in further increase in power, due to 
the preferred amplification of the leading front and 
reduction in the duration of the input pulse. Ex­
perimentally, however, no appreciable reduction in 
the pulse duration during amplification has been at­
tained to date. Experiments reported in [ sJ show 
that nonlinear amplification of the pulse of a Q­
switched laser results not in the shortening of the 
duration of the leading front, but in a displacement 
of the pulse as a whole, with the maximum of the 
amplified pulse appreciably leading the maximum 
of the pulse causing the amplification, so that the 
rate of propagation of the maximum pulse greatly 
exceeds the speed of light. The propagation of the 
maximum of the pulse in the amplified medium, 
with a velocity exceeding that of light, does not 
violate the causality principle, since such a propa­
gation is at the expense of amplification of photons 
emitted by the driving laser at earlier instants of 
time. The motion of the pulse can continue only 
until the shutter of the driving laser is turned on. 
A shortening of the pulse duration should be ob­
served simultaneously with the approach of the 
pulse near the instant of shutter switching. 

In the present investigation we used an addi­
tional shutter (Kerr cell) to reduce the pulse dura­
tion in nonlinear amplification; this shutter in­
creased the slope of the leading front of the ampli-
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fied pulse. We were able to observe in this case 
an appreciable reduction of the pulse duration. 

II. THEORY OF NONLINEAR AMPLIFICATION 

The theory of nonlinear amplification of a light 
pulse was considered theoretically by several 
workers. [4, 5• ?-t4J It has been shown that the dura­
tion of the pulse propagating in a medium with 
population inversion can be reduced; in a medium 
with radiation losses, the pulse energy becomes 
practically constant after passing through a defi­
nite distance; the minimum pulse duration obtain­
able with nonlinear amplification is of the order 
of the reciprocal of the width of the radiation tran­
sition. We consider below the singularities con­
nected with propagation of a pulse with a velocity 
exceeding that of light. 

1. Fundamental equations 

We consider a medium of two-level "atoms" 
with inverse level population. Although we have in 
mind the case of impurity ions in a crystal, the 
results obtained are valid for any quantum system 
with homogeneous broadening of levels. To de­
scribe the medium we use Boltzmann's equation 
for the density matrix p with longitudinal and 
transverse relaxation, and to describe the field E 
we use Maxwell's equations in a medium having 
also nonresonant radiation losses: 

82E 2 aE 82 h 

at2 + c rot rotE+ yc 7ft = - 4nN; atz Sp (!LP ), ( 1)* 

*rot = curl. 
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a~ A A 

iii-= [J'£0 -p.E, p]-ilifp, at (2) 

where c is the velocity of light in the medium 
without ions, y the coefficient of radiation loss per 
unit length in the medium, Ni the ion density, :Ito 
the unperturbed Hamiltonian of the ion, and 1J. the 
operator of the electric dipole moment of the ion. 
The term rp describes phenomenologically the re­
laxation of the density matrix element: the diago­
nal elements are ( rp)nn = (Pnn - P~n)/T 1o the off­

diagonal elements are (rp)mn = PmniT2 (m, n = 1, 
2), where T1 is the time of longitudinal relaxation, 
equal to the lifetime of the ion in the excited state, 
and T2 is the time of transverse relaxation, deter­
mined essentially by the ion-phonon interaction 
that leads to homogeneous broadening of the levels. 
In crystals in which population inversion is at­
tained we have T1 » T2. 

In the representation in which ::ft0 is diagonal, 
the equation (2) for the density matrix can be re­
duced to equations for polarization P = Ni Sp(!J.p) 
and the density of the inverse population 
N = Ni(P22- PH): 

azp 2 aP Wo I J2 -+---+w02P= -NE-Ii f.l1z , atz T2 at 
(3) 

aN 1 aP 2 
-+-(N -N0) = E-,--li-' at Tl ut Wo 

(4) 

where No = Ni(p~2 - p011) is the inverse-population 
density in the absence of the field, wo = w21> and 
small terms have been omitted under the assump­
tion that w0 » 1/T2. For the case T 1 = T2 these 
equations were obtained by Fal:n[ 15J and by Oraev­
skil.[16J 

The field equation (1) and the material equations 
(3) and (4) together with the initial condition com­
pletely describe the resonance interaction of a 
light pulse propagating in a medium with population 
inversion. 

In luminescent crystals usually uoNo, 'Y « k, and 
T2 » 1/ w0, where u0 is the cross section, defined 
below, for the radiative transitions between levels, 
and k is the wave vector. We can therefore go 
over to "slow" variables (g, !!!', cp, 7./J : 0 

E = lf2[g(t, r) exp {i[cp(t, r) + wt- kr]} +c. c., 

P = lf2!!fo(t, r) exp {i[ljl(t, r) + wt- kr]} +c. c. 

Then the equation for the field and the material 
equations reduce to the following system of five 
equations: 

1 )For simplicity we confine ourselves to the one­
dimensional case of propagation of linearly polarized light. 

(5) 

where we introduce the symbol for the cross sec­
tion of the radiative transition between levels at 
the central frequency wo: 

(7) 

Before we investigate the equations in ( 6), let 
us determine the conditions under which they go 
over into the usual velocity equations for radiation 
transfer. We integrate the polarization equation 
( 63) under the initial condition :J>(- oo) = 0 and sub­
stitute the resultant expression in the field equa­
tion (61) and in the equation for the inverse popula­
tion density (65): 

t 

acg + c acg + _! c(g = aToc sin (ljl- cp) ~ N (t') [g (t') 
at ax 2 2 2 

( t'- t \ 
X sin ( ljJ - cp) exp ------r;- ) dt', 

aN . 1 croc . - + -(N- N0 ) =- ---li- [g sm(ljl- cp) at T1 4n woTz 

X fN(t')(g(t')sin(ljJ-cp)exp( t' Tzt )dt'. 

If the changes of the field, of the inverse popula­
tion, and of the phase difference of the field are 
negligibly small within a time T2, then the inte-
gral in (8) reduces to T2N(t) {g(t) sin (7./J - cp) 
and the factor sin2 (7./J - cp) is equal to 
T22/[(w- w0) 2 + Tz2], that is, it describes a Lor­
entz emission line shape. Then uo sin2 (7./J - cp) 

(8) 

= u(w) is the cross section for the radiative transi­
tion at the frequency w. Going over to the radia­
tion flux density 

1 = _t _c cgz [photon/sec-cm2] 
liwo 8Jt 

we can rewrite (8), subject to the foregoing condi­
tions, in the usual form 

a! a! 
-+c-+vcl= a(w)clN, at ox 
oN 1 - + --(N- N0 ) =- 2a(w)IN. ot T1 

(9) 

Thus, the assumption that the change in all the 
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variables within the time T 2 is slow is essential 
when going over from the rigorous equations (6) to 
the velocity equations (9). In the analysis of proc­
esses that evolve during a time comparable with 
the transverse relaxation time T2, it is essential 
to use (6). 

2. Dynamics of a Light Pulse Under Nonlinear 
Amplification 

We now consider the interaction of a radiation 
pulse of duration much longer than the transverse­
relaxation time T2• In this case we can use (see 
Sec. 1) the velocity equations (9), which reduce to 
a nonlinear partial differential equation: 

t !! + c :~ = cl [ aoN0 exp (- 2cro ~ l(t', x)dt')- v J, 
-oo 

(10) 

where we neglect the spontaneous decay of the in­
verse population, since the pulse duration is in 
practice always Tp « T1. 

The nonstationary solution of (10) with ')' =1= 0 
cannot be obtained analytically. In the case of zero 
radiation losses (y = 0), an analytic solution can 
be obtained[ 4, 5• 10 • 11 l but the solution is exces­
sively idealized, since, as will be shown below, it 
is just the radiation losses which determine essen­
tially the evolution of the pulse. However, it is 
possible to draw the principal conclusions without 
considering nonstationary solutions of ( 10). 

The propagation equation (10) has a stationary 
solution of the form I(t- x/v) (v =1= c). A station­
ary solution corresponds to a pulse that develops 
after a sufficiently long propagation in the medium 
and moves with velocity v; this solution is deter­
mined by 

1 1 't \ J 
i ( "C- -J =I [ croNoexp (- 2cro ~ l(T')dT')- v , (11) 

-oo 

where T = t- x/v. Going over to the function 

~ 

R(T)= ~l(T')dT' 

and integrating under the initial condition R(- co) 
= 0, we reduce (11) to the form 

( 1 1) . No 
--- R = -(1- e-2croR)-vR. 
c v 2 

(12) 

As can be seen from ( 12) a stationary solution 
with physical meaning (the total energy of the 
pulse R( +co) satisfies the condition 0 < R(+oo) 
< +co), exists and is stable under the conditions 

aoNo > y > 0, v >'c. (13) 

The first condition is trivial: the initial ampli­
fication of the medium u0N0 is larger than the 
nonzero losses 'Y. The second condition signifies 
that the propagation velocity of the developing sta­
tionary state of the pulse exceeds the velocity of 
light in the medium c. The physical meaning of 
this consists in the following. 

In the stationary states the energy &m = R(+oo) 
of the pulse is determined from (12) under the 
condition R(+oo) = 0, which leads to 

1- exp (- &m) = _J__ &m (14) 
& s aoNo & s ' 

where &s = 1/ 2u0 has the meaning of the satura­
tion energy that reduces the inversion by a fac-
tor e. We shall henceforth confine ourselves to 
the case of practical interest 'Y /u0N0 < 0. 5 (in 
practice y/u0N0 « 1). In this case &m » <ll's, 
therefore the energy of the leading front of the 
pulse is perfectly sufficient for complete de-exci­
tation of the active particles of the medium. As a 
result, the leading part of the pulse takes on the 
entire energy of the active particles, while the 
trailing part of the pulse propagates in the medium 
with loss. This mechanism ensures additional for­
ward motion of the pulse maximum. Thus, owing 
to essentially nonlinear interaction between the 
radiation pulse and the inversely populated me­
dium, the pulse becomes continuously deformed, 
thus ensuring its forward motion with effective 
velocity v > c. 

The shape of the pulse in the stationary state 
can be obtained by approximately solving (12), ex­
panding exp(-2u0R) in a series up to R3 inclusive. 
For the sake of brevity we do not present this so­
lution, since all the principal parameters of the 
stationary state will be obtained below by a differ­
ent method, and show for comparison in Fig. 1 a 
typical pulse shape in the stationary state, obtained 
by numerically solving ( 12). 

lt'l/I(o} 
to 

0.5 

FIG. 1. Shape of a light pulse in the stationary state with 
a duration much longer than T 2 (y/a0N0 = 0.17). 

We note that one can speak of stationary states 
of a real pulse with leading front of finite length 
only in the case when the time necessary to es­
tablish a stationary state is much shorter than the 



NONLINEAR AMPLIFICATION OF LIGHT PULSES 19 

total duration of the leading front. We shall show 
below that an exponential pulse approaches the 
stationary state within a time Cl.ts ~ (cy)-1• The 
total length of the leading front of a Q-switched 1 
laser pulse (delay time ~tct) is in practice always 
much larger than ( c y) - 1. 

Let us estimate the effective velocity of the 
pulse in the stationary state. Since the pulse as a 
whole moves with velocity v, it is sufficient to 
find, for example, the displacement velocity of the 
leading front. It follows from ( 11) that the leading 
front, propagating in the medium with practically 
constant inverse population N0, grows exponen­
tially: 

lt(t, x) ~ loexp (vt-x/c-ro). 

In addition, the leading front satisfies the nonsta­
tionary equation (10), thus leading to the following 
expression for the effective pulse velocity: 

vIc= 1 + c{croNo- '\')'to. (15) 

The slope of the leading front To is connected 
with the duration of the leading front of the pulse 
T f by the relation Tf = f( a) To, where a = 'Y /ao No is 
a dimensionless parameter. Examining the equa­
tions in (12) at the instants of time Tmax• Tmax 
- Tf, and T-oo we can obtain the function f( a). 
In the case when a > 10-2 we have 

-r1 (1- a)ln(1/a) 
---:ra-=f(a);::::;: (1-a)-aln(i/a) (16) 

Finally, we can find the total pulse duration Tp 
in the stationary state. The total pulse energy is 
cWm ~ N0 /2y. From the condition that the pulse 
power be stationary at the maximum, it follows 
that 

'tmax 

croNo exp (- 2crocW t) = y, [g f = ~ /(-r')d-r', 

where ESt is the energy of the leading front of the 
pulse. Approximately we have Tf/Tp = ESr/ES m 
and consequently 

-r1 /-rp ;:::;;: aln (1 /a). (17) 

In order to trace fully the dynamics of the pulse 
and its approach to the stationary state, we have 
obtained the nonstationary solutions of (10) by nu­
merical integration with an electronic computer. 
We present the results of the solution for a case 
corresponding to the propagation of a pulse in a 
ruby crystal with customary parameters. The ini­
tial pulse at the boundary of the medium has· ex­
ponential form 

fS o exp (- t/ro) 
Io(t)=-:r;- [1+exp(-t/-ro)J2 ·, 

which approximates well the leading front of the 
leading pulse of a powerful laser with instantaneous 
Q-switching. The real laser pulse has a somewhat 
asymmetrical form, owing to the long duration of 
the trailing fronts, but this is immaterial, since 
only the leading front determines the dynamics of 
the pulse. One of the typical solutions is shown in 
Fig. 2, which illustrates plots of I(t, x) in a coordi­
nate system that moves with velocity c, after 
traversing a distance x in the medium with in­
verse population. It is clearly seen that as soon 
as the energy in the leading front of the pulse 
reaches the saturation energy ESs, all the active 
particles are de -excited on the leading front and 
this leads to additional motion of the leading front 
of the pulse. Then, after traversing a distance 
~ v / c 'Y, the energy of the pulse reaches the maxi­
mum value &m, and with further motion the pulse 
assumes a stationary form that propagates with 
velocity v. In addition, Tf of the pulse in the sta­
tionary state is close to the duration of the leading 
front T~ of the initial pulse. 

fro/6s 

1.00 

0.75 

0.50 

0.25 

FIG. 2. Change in the shape of an exponential pulse with 
initial energy fS 0 - [g propagating in a medium with inverse 
population (a0N0 = 0.2 em"', y = 0.03 em"', x - distance tra­
versed by the pulse in the medium). 

Thus, the light pulse with exponential leading 
front of slope To propagating in a medium with in­
verse population, reaches after a time ~ ( yc) - 1 of 
nonlinear amplification a stationary state of dura­
tion Tp ~ Tf [a ln (1/a)] - 1 moving with velocity 
v = c[ 1 + cT0(u0N0 - y)]. In this case the preferred 
amplification of the leading front does not lead to a 
reduction in the duration of the initial pulse. 

3. Reduction of Pulse Duration 

To reduce the pulse duration it is necessary to 
increase appreciably the slope of the leading front. 
To this end, one can pass the initial pulse through 
a shutter which opens at the instant of passage of 
the pulse maximum. In the case of zero initial 
transmission of the shutter, when total cutoff of 
the leading front takes place, the preferred ampli-
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FIG. 3. Change in energy (a) and duration (b) of a pulse 
whose leading front is cut off by a shutter with zero transmis­
sion, propagating in a medium with inverse population 
(Eo = 10-2 fS 5 ). 

fication of the leading front leads to an effective 
reduction of the pulse duration. Figure 3 shows the 
change in duration and in the energy of the pulse as 
it propagates in a medium with inverse population. 
After the P,ulse energy becomes equal to the satu­
ration energy, a sharp reduction in the pulse dura­
tion sets in. At nonzero initial transmission of the 
shutter, there is a definite limit on such a reduc­
tion. 

The nonlinear absorption [ 17 - 19 J of the leading 
front of the pulse as it propagates in a two-compo­
nent medium (one component constitutes amplify­
ing atoms and the other absorbing atoms) also 
leads to a suppression of the "runaway" of the 
leading front and makes possible an effective re­
duction of pulse duration. Figure 4 shows the 
change in the shape of an exponential pulse as it 
propagates in a two-component medium; this 
change was obtained by numerically integrating 
( 10) and the equation for the number of absorbing 
atoms. It is clearly seen that the leading front of 
the pulse is continuously absorbed, bleaching the 
medium and ensuring effective amplification of the 
pulse maximum. 

We note that there exists a limit beyond which 
the pulse duration cannot be reduced. Examination 
of the rigorous equations (6) shows that the shape 
of the pulse with minimum duration "'Tz is of the 
form (y/a0N0 < 0.5): 

/(•)= 2(ao1Vo/v-1')2exp(-t/-ro) 
aoT2[i + exp(- tj-r:0)]2 ' 

T2 ( croNo )-1 
T:o = - 2- -'Y- - 1 • (18) 

The pulse energy in the limiting stationary state 
N0(1/y - 1/a0N0) is almost double the pulse energy 
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FIG. 4. Change in shape of exponential pulse propagating 
in a two-component medium when the initial pulse energy ft 0 

is larger than the threshold (a0 (
2 ) /a0 (' l = 50, 

a 0 ( 2 )N 0 ( 2 ) /a0 <'lN0 (') = 5, a 0(')N0 (') = 0.2 em·', where the index 
1 pertains to the amplifying atoms, 2 pertains to the absorbing 
atoms, and y = 0.03 cm-1). 

iSm at duration » T2, for when the pulse duration 
is » T2, the inverse population decreases to zero 
after the passage of the pulse, and in the limiting 
stationary state the inverse population varies in 
the following fashion: 

N(•)= No- 2y(cro1Vo/v-1) 
cro[i+exp(-t/-ro)] ' 

(19) 

that is, the atoms become inverted after passage 
of the light pulse. 

III. EXPERIMENTAL INVESTIGATION 

1. Measurement of the Rate of Propagation of the 
Pulse Maximum 

The propagation of a powerful light pulse was 
investigated experimentally with the aid of a setup 
consisting of a Q-switched laser and an optical 
quantum amplifier. The experimental setup is 
shown in Fig. 5. 

The light pulse was produced by the laser de­
scribed in [ SJ. A small fraction of the laser light 
flux was diverted by means of glass plate 5 to a 
coaxial photocell 6. The greater part was fed to 
the input of an optical quantum amplifier consisting 
of two ruby crystals 7 of 24 em length and 1.6 em 
diameter each. To eliminate feedback, the end 
faces of the crystals were cut at the Brewster 
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FIG. 5. Diagram of setup: 1-laser mirror, 2- polarizer, 
3- Kerr cell, 4 -laser ruby crystal, 5- glass plate, 6- co· 
axial photocell, 7- amplifier ruby crystal, 8- Sl-14 oscillo­
scope, 9- neutral light filters. The input mirror of the laser 
is at the end of crystal 4. 

angle. For a weak signal the overall amplification 
of the optical amplifier was approximately 50. 

The light pulses before and after the amplifier 
were registered with the aid of a photocell 6, with 
the amplified pulse passing through a supplemen­
tary path of approximately 20 m and striking the 
photocell 56 nsec after the arrival of the input 
pulse. 

The pulses from the photocell were registered 
with an S1-14 oscilloscope. The light fluxes were 
suitably attenuated by neutral filters 9 to ensure 
linear operation of the photocell and of the oscil­
loscope. Figure 6 shows a typical oscillogram of 
the input and output pulses for a weak input signal. 
The generator pulse was attenuated in this case by 
a factor 3 x 103 with neutral optical filters. 

FIG. 6. Oscillograms of input (left) and amplified (right) 
light pulses: a- case of weak signal -linear amplification; 
b- case of strong signal -nonlinear amplification; c- cali­
bration markers with period 8 nsec. 

The parameters of the unattenuated input pulse 
were as follows: energy-1. 3 J; duration at half­
height-16 nsec; start of pulse determined by the 
instant of switching on of the shutter generator is 
45 nsec away from the peak of the pulse; duration 
of the leading front (from the 0. 5 level to the max­
imum) -8 nsec. Figure 6b shows an oscillogram of 

the input and output pulses with the signal unatten­
uated. 

From a comparison of the oscillograms in 
Figs. 6a and b we can note that no appreciable 
shortening of the pulse takes place, but the output 
pulse in Fig. 6b turns out to be much closer to the 
input pulse than in Fig. 6a (the optical delay was 
not changed!). Reduction of the oscillograms 
yields for this shift a value Atexp = 9 ± 0. 5 nsec 
both for the maxima and for the half-heights of the 
leading fronts. In accordance with the ideas devel­
oped above, this effect is connected with the non­
linear amplification of the light pulse, which has 
an exponentially growing leading front. 

The estimated pulse energy density reached the 
saturation energy fS s ::::; 4 J /cm2 at a distance 
L = 10-15 em from the output end of the amplifier. 
(The pulse energy at the output of the amplifier 
reached 17 J.) The fact that the pulse leads by At 
means that it has moved cAt in space. The effec­
tive displacement velocity of the pulse maximum 
is determined from the relation (v- c)L/c =cAt. 
We thus obtain in experiment v /c = 10-15, or a 
maximum displacement velocity 6-9 times larger 
than the speed of light in vacuum. 

The theoretical value of the delay time can be 
estimated from formula (15) for the pulse ''elocity 
in the stationary state, since the velocity in non­
linear amplification is close to the stationary 
value even far from the stationary state. Accord­
ing to (15), 

v-c L 
~ttheor ---- = ( aoNo- y)Lr:o. 

c c 

The slope of the input pulse is To ::::; 4 x 10-9 sec. 
Therefore A ttheo = 5-7 nsec. Since the mechanism 
of displacement of the pulse maximum goes into 
operation somewhat before the pulse energy 
reaches 4 J I cm2, the experimental lead should ex­
ceed this estimate. The experimental value ob­
tained 9 ± 0.5 nsec does not contradict the repre­
sentations developed above. 

2. Shortening of Pulse Duration 

As shown earlier (Sec. 3 of Ch. II), to reduce 
the duration of the leading front and of the entire 
pulse it is necessary to cut off the gently sloping 
part of the leading front of the initial pulse. This 
is done with an additional Kerr shutter placed past 
the generator and ahead of the diverting plate 5 
(Fig. 5). The additional shutter was opened with a 
delay of 48-50 nsec relative to the generator shut­
ter. The opening time of the Kerr shutter, between 
the 0.1 and 0.9 levels, was Tsw = 8 nsec. In the 
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closed state the shutter transmitted approximately 
3% of the light (1/ 1 = 0.03), while in the open state 
it transmitted 11 2 = 50%. To compensate for the 
losses in the solution, an additional amplifier 
stage was added. 

The delay between the instant of opening of the 
generator shutter and the appearance of the pulse 
maximum depends on population inversion of the 
crystal. It was therefore possible to cut off the 
pulse from any intensity level by varying the gen­
erator pump. 

Figure 7 shows an oscillogram of the pulses 
ahead of the amplifier (but past the second shutter) 
and past the two-stage amplifier, when the nonlin­
ear mode just begins to come into play. It is seen 
from the oscillogram that the leading front begins 
to shorten. 

FIG. 8. Same as in Fig. 7. Three-stage amplification. 

Figure 8 shows the pulses before and after am­
plification with three amplifier stages. In this 
case the pulse cutoff was from a higher level. The 
duration of the input pulse at half-height was T; 
= 8. 7 ± 0.5 nsec, and the duration of the amplified 
pulse was Tp = 4. 7 ± 0.5 nsec. The durations of 
the leading fronts from the 0. 5 level to the maxi­
mum were T~ = 3.7 ± 0.5 nsec and Tf = 1.9±0.5 
nsec for the input and output pulses respectively. 
A theoretical estimate for the possible reduction 
in the duration gives in our experiment a shorten­
ing by a factor of two, which agrees with the ex­
perimental value. In our experiment, the initial 
transmission of the additional shutter is 11 1 =1:- 0. 
This is what imposes a limit on the duration of the 
leading front of the amplified pulse. 
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