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It is shown that a collisionless plasma in a strong external high-frequency field is unstable 
against the excitation of solenoidal oscillations. This instability is possible when the frequency 
of the external field is either lower or higher than the electron plasma frequency; this feature 
distinguishes it qualitatively from instabilities associated with irrotational oscillations. [1] 

The instability considered here arises when the amplitude of the electron oscillations in the 
external field is greater than the Debye radius. 

1. In the present work we consider the stability of 
a plasma in a strong high-frequency field with re­
spect to the excitation of solenoidal oscillations. 

t 

lao (I Pa- ea ~ dt'Eo(t') I) =lao (I Pa + ea~: cos wot I). 
-oo 

It has been shown earlier [i] that irrotational oscil­
lations can be excited when the field frequency w0 

is of the order of the electron plasma frequency 
WLe = (411"Nee2/m)1/2 or lower. It will be shown 
below that solenoidal oscillations can be excited 
when the frequency of the external field is higher 
than WLe· Everywhere below collisions are ne­
glected entirely. This means that the growth rates 
we obtain are large compared with the collision 
frequency. 

The present problem arises in connection with 
the possibility of using radiative methods for ac­
celeration of a transparent plasma. [2] The prob­
lem treated below is similar, in certain ways, to 
one that has been investigated earlier by Voikov. [3] 

Strictly speaking, however, the regions investigated 
in [3] and those studied here are different. 

As in U •4] we limit our analysis to the case of 
perturbations with wavelengths appreciably 
smaller than the characteristic dimensions of the 
inhomogeneity of the plasma and of the external 
field. Under these conditions we assume every­
where below that w0 » wLeVTe/c which means 
that the penetration of the external field is charac­
terized by a normal skin effect. Then we can as­
sume that the external field and the particle distri­
bution in the unperturbed state are independent of 
coordinates and neglect the high-frequency mag­
netic field. The dependence of the electric field 
on time is written in the form E 0(t) = E 0 sin w0t. 
The particle distribution function in the ground 
state, which is assumed to be isotropic in the co­
ordinate system fixed in the particles, is given by 

Solving the kinetic equation for small deviations 
from this equilibrium state and writing the non­
equilibrium electric field as a series 

~E (r, t) = eikr-iwt ~ ~E<n>e-inw,t, 
n=-oo 

we obtain the following expression for the per­
turbed distribution function: 

t 

(1) 

~f .. (p,r,t)=exp(ikl·+ia,.sinw0t)'P',.(p-e,. ~ dt'E0 (t'), t), 
-oo 

08 

E k / ~ \TP ( ) ""' ur (n)( ) -i(w+nwo)t a,. = e,. 0 m"'w0 , T" p, t = £...J I "' p e , 
n=---oo 

of co 
uP (n) ( ) _ ie"' ao ~ J ( ) 
T"' p - - k "'- ..:::.J n-l a,., 

nw0 + w- V upi l=-co 

{~· + (n-l)w0 [~ .. _ k;EoiJ} ~E.<t> 
X " lw0 + w 11 kEo 'l · 

(2) 

Here, Jn(a) is the Bessel function of order n. 
Using (2) to find the current density and substi­

tuting it in Maxwell's equations we obtain the fol­
lowing equation for the field in the plasma: 

+ ~ ~, nwo + w fJEJml 
~ L.Jm+~ J 

m, r=-co a. ffio W 

[ k-k-] [k X fJ;i- ~2 3 + 6ea1((J) + r(J)o, k) k (nwo + w) 

(r- n)(J)o J [ k 
+ k(kEo) [k[kEo]]_i k(mwo+w) 
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(r- m)wo J } + k (kEo) [k [kEo]] 
1 

= 0, 

" l ( k) 4nea2 (' 1 afao 
u€00 w, = -- 1 dp ------k--

k2 • w + iO - kv ap ' 

" tr< k)- 2ne"'2 Sd [k[vk]] atao u€a W, - p --
wk2 w + iO - kv {)p · 

(3)* 

(4) 

(5) 

2. From the field equations (3) for the irrota­
tional oscillations there follows immediately the 
result obtained by one of the authors [iJ in which it 
has been shown, in particular, that the external 
electric field is important for irrotational oscilla­
tions only when it is not perpendicular to the wave 
vector. Therefore, we will be primarily interested 
in the case of transverse propagation in which the 
wave vector k is perpendicular to E 0. 

Under the assumption of transverse propagation 
the field equations (3) assume the form 

{ c2(k;ki- k2b;i) + (nwo + w )2[ ( b;i- k~~i) e1r(nw0 + w, k) 

k;kj ]} 6E .(n) + ----,-z e1 (nw0 + w, k) 1 
,.,. nwo+ w 

[ bE .(n-1) bE .(n+i) J 
-(nwo+w)k;Eoi 1 + 1 

(n-1)wo+w (n+1)wo+w 

etr = 1 + ~ beatr. 

"' 
(6) 

It follows from Eq. (6) that oscillations for 
which the vector oE is perpendicular to the plane 
formed by k and E 0 are stable. Hence we consider 
the case in which the electric vector for the wave 
oE lies in the plane of k and E 0. Using Eq. (6) and 
neglecting quantities of the order of the electron­
ion mass ratio we find 

{ (nwo + w )2 etr (nw0 + w, k)- c2k2}cp<nJ 

+ tj4~2c2k2{[cp<nJ + cp(n+2•J 

X bee1 ([n + 1]wo + w, k) .[ 1- beel([n + 1] Wo + w, k) J 
e1([n + 1] w0 + w, k) 

+ [cp(n) + q;<n-ZJ] bee1 ([n- 1] Wo 

+ w, k) [ 1 _ ~ee1 ([n- 1] Wo + w, k) ]} = O 
e1([n-1]w 0 +w,k) ' 

eEo 
VE=--, 

mwo 

EobE(n) 
cp(n)=---. 

muJo+w 
(7) 

The infinite determinant corresponding to this 
system of equations determines the dispersion 
relation for the characteristic frequencies w. The 
condition that the wavelength of the perturbations 
be small compared with the characteristic dimen­
sions of the inhomogeneity of the external field 
implies the inequality c 2k2 » I wa - wie I. Further­
more we keep in mind the fact that the velocity 
associated with the electron oscillations in the ex­
ternal field VE is small compared with the velocity 
of light (i.e., {3 « 1) so that the dispersion relation 
corresponding to the field equation (7) can be 
written in the form 

1 + 2~2Bn- ~4BnBn+2 [ 1 + 2~2Bn+2 

- ~4B B 1 J-1 r 
n+2 n+4 1 + 2~2Bn+4 +... - ~4B,,Bn-2 l1 

+ 2R2B 1 J-1 P n-2- ~4Bn-2Bn-4 = 0 (8) 
1 + 2~2Bn-4 + . . . ' 

where n is an integer 

B _ 1 llei(w + nw0, k) 
n=-/. 1( + k) [1+be;1(w+nw 0,k)]. 

'± e C•J nwo, 

If we are interested in external field frequencies 
large compared with the electron plasma frequency, 
to obtain possible spectra of oscillations for trans­
verse propagation we need only consider the first 
two terms in Eq. (8), writing the dispersion rela­
tion in the form 

1 = ~ Rz llee1(iv, k) 
2 ~> 1( [1+oe/(i",k)], (9) 

€ iv, k) I 

where w = - nw0 + iy . 
Let I Y I » kvTe » kvTi where VTe and vTi are 

the electron and ion thermal velocities. Using the 
asymptotic expression o E~ which is obtained from 

Eq. (4) under these conditions, we find that one 
solution of Eq. (9) has the form 

1 VE eEo 1 '\' = +-=~WLi = +--WLi = ±----WLi-, (10) 
l'2 c l'2 me 12 Wo 

where WLi is the ion plasma frequency. 
In order to satisfy the inequality I y I » kvTe 

i.e., if the time in which a thermal electron travels 
a distance of the order of a wavelength is to be 
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large compared with the growth time y-1, the fol­
lowing relation must be satisfied: 

(11) 

where rne = VTe I wLe is the electron Debye radius. 
Thus, a plasma in a strong high-frequency electric 
field can be unstable. We note that a similar insta­
bility for a plasma in a static electric field has 
been studied by Lovetskil and Rukhadze [S] 

We now examine Eq. (9) under the assumption 
that kvTe » I Y I » kvTi. In this case 

2= .2~212-(krDe)2[1+3(kr ·)2) (12) 
"f lilLt 1 +(krDe)2 Dt ' 

where rni = VTi I WLi is the ion Debye radius. In 
the limit {32 « (krne) 2 this expression corresponds 
to the spectrum for ion acoustic oscillations; as is 
well known, these are excited only when the ion 
temperature in the plasma is much smaller than 
the electron temperature. In the opposite limit we 
obtain Eq. (10) from Eq. (12). In this case the 
following relation must be satisfied in place of (11): 

(13) 

Actually, Eq. (10) also holds when the quantities 
on the left and right sides of (11) are comparable. 
However, the right inequality in (13) must be satis­
fied in any case. 

In view of the fact that k » w01 c when w0 » WLe 
we obtain the following condition for the existence 
of growing instabilities with a growth rate given by 
(10): 

(14) 

In other words, the amplitude of the electron oscil­
lation in the external field must be large compared 
with the Debye radius. This condition is similar to 
one that has been obtained earlier[!] for excitation 
of irrot.ational oscillations. At external field fre­
quencies smaller than the plasma frequency the 
analysis holds for wave numbers that satisfy the 
condition k » WLelc. Hence, in place of (14) we 
obtain 

(14') 

where mi is the ion mass. 
In the limit IY I« kvTi we find from (9) 

( 2 )''' { ~2 } 1 V = - kvTi -- k2 (rDe2 + rDi2) ·--. 
\ n . 2 k2rDiz 

(15) 

This solution corresponds to the possibility of 
excitation of oscillations with wave numbers given 
approximately by 

k= 1 ~ 
l"2 (rDe2 + rDi2) '!. 

In view of the fact that the wave vector must be 
large compared with w01 c when w0 » WLe and 
comparable with WLe I c when w0 « WLe the neces­
sity of satisfying (14) or (14') is evident. Since the 
possibility of excitation of oscillations with growth 
rates given in (15) can only occur within a narrow 
range of wave vectors, we can write (15) in the 
form 

The quantity in rectangular brackets is small so 
that this growth rate is small compared with that 
given in (10). 

Taking account of the inhomogeneity in the ex­
ternal field leads to a correction in Eq. (10) which 
has a relative order equal to the ratio of the oscil­
lation wavelength to the characteristic dimension 
of the inhomogeneity of the external field. 1 > 

The expressions for the growth rates obtained 
here (10), (12), and (15) are roughly similar to the 
results of Makhan 'kov and Rukhadze [S] and 
Sholokhov[7] concerning an instability in which the 
electrons move uniformly with respect to the ions. 
This result is to be expected because in our case 
the instability also derived from the motion of the 
plasma electrons with respect to the ions. However 
this motion is oscillatory rather than uniform. We 
therefore emphasize that the growth rates obtained 
above are always small compared with the frequency 
of oscillations of the electrons in the external field. 

When I Y I » kvTe » kvTi• in addition to the solu­
tion obtained above Eq. (9) yields a stable solution 
with frequency i y Rj wLe· However, if one investi-

1 >In order to obtain this result in a consistent way we 
must make a more accurate analysis of the ground state. 
For example, when nonlinear effects are considered the 
field in the ground state is given by 

e ko 
E= E0 sin (wot- kor) - 6m E02 r;;;'i sin 2 (w0t- k,r), 

c 
B = Wo [Eoko] sin (w0t- k 0r), 

where k0 is a wave vector which is related to the frequency 
w0 by the dispersion formula k02 C 2 = w0

2 - WLe 2 • If the 
plasma particles are described in the hydrodynamic approx­
mation the velocities and number densities for the electrons 
and ions are given by the following relations: 

1 ko 
v. (t, r)=-VE cos (mot- kor) + 3 vE2 Wo cos2 (w0t- kor). 

ei m [ 1 ko J V;(t,r)=emi -vEcos(w0t-k0r)+j2vE2 w;cos2(w0t-k0r), 
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gates this solution at field frequencies which are 
of most direct interest (w0 ~ WLe) it is not suffi­
cient to consider the first two terms in the disper­
sion relation (8), as we have done in obtaining 
Eq. (9). It is also necessary to take account of the 
Bn+2 and Bn_2 terms. Carrying out this procedure 
and introducing the notation w = - (n - 1)w0 + i 'Y 
we obtain the following dispersion equation: 

e1(iy +roo, k)e1(iy- roo, k)- 1/2~2 {e1 (iy- roo, k) 

X f:Je.1(iy +roo, k) [1 +lie/ (iy +roo, k)] 

+ e1(iy + ro0, k)f:Je.z(iy- roo, k) [1 + lle;1(iy- roo, k)]} 

+ 3/ts~~IIEe1 (iy ---:- roo, k) ( 1 + lle;1 (iy- roo, k)] f:Je.1(iy 

+roo, k) [1 + l\e;1(iy + ro0, k)] = 0. 

It is evident that a solution of this equation can 
be obtained when I 'Y I « w0 if the frequency of the 
external field is approximately equal to the elec­
tron plasma frequency 

/.roo2 - roLe2 - roL;2I ~ roo2. 

In this case we can regard the period of the 
external field as being smaller than the time in 
which a thermal electron traverses a distance 
equal to the wavelength of the perturbation being 
considered ( w0 » kvTe). Then, using the notation 

we find 

y2 = -1/~~~roLe2 (x2 + 4x + 3). (16) 

It then follows that an instability is possible if the 
following inequality is satisfied: 

.!_ < ·roLe2 + roLi2- roo2 < ~-
4 ~~roLi 4 

The maximum growth rate, 

obtains when 

We note that for the branch being considered 
above, in addition to the instability at w0 :::o WLe 
it is also possible to have an instability when the 
frequency of the external field approaches WLe /n 
where n. is an integer. In studying the solutions for 
these values of w0 in the dispersion equation (8) we 
must retain quantities Bi of higher order than those 
that apply for the case w0 - wLe· However, the 
growth rates obtained in this analysis are found to 
be smaller than those in (17). Thus, when w0 

~ wLe /2 the order of the growth rate {32 wLi is not 
only smaller than (17), but is also smaller by a 
factor {3-1 than the growth rate in (10). 

In contrast with the instabilities that arise 
when the frequency of the external field approaches 
the plasma frequency or when there is a resonance 
between an overtone of the external field and the 
electron plasma frequency, the instability with the 
growth rate in (10) obtains for a wide frequency 
range (c » VE » w0rne)· This is a qualitative dif­
ference between the instability of the plasma 
against solenoidal oscillations and the case of 
irrotational oscillations that has been treated 
earlier; [1] in the latter case the instability does 
not appear if the frequency of the external field is 
appreciably greater than the electron Langmuir 
frequency. 

We note that in the limit of small wavenumbers 
Eq. (10) coincides with Eq. (2.12) given by Volkov, [3J 
who investigated the effect of a traveling wave on 
plasma oscillations. In this case one considers 
oscillations characterized by a wavevector perpen­
dicular to the direction of the external field and 
the problem is similar to that being considered in 
the present section. It should be noted that in l 3J 
consideration was given only to external field fre­
quencies greater than the electron plasma fre­
quency; moreover, a single-fluid hydrodynamic 
model was used and this is valid only when the 
wavelength of the oscillations is large compared 
with the mean free path. Volkov[3J has noted that 
his solution of the problem "cannot be regarded 
as completely correct because of the neglect of the 
thermal motion of the particles.'' On the other 
hand, our analysis does not have the limitations of 
the Volkov analysis [3] and is suitable for the object 
of interest to us, a collisionless plasma. A consis­
tent account of the thermal motion shows that the 
expression that arises (12) differs from that ob­
tained in [3]. Furthermore, the kinetic spectrum 
(15) obviously cannot be obtained in a hydro­
dynamic theory. We note further that the insta­
bility with the growth rate given by (17), which ob­
tains in the hydrodynamic limit of a cold plasma, 
was not noted by Volkov. [3] Finally, all of the 
analysis in his work is limited to the case of 
plasma waves propagating along the traveling 
wave, that is to say, the case of purely transverse 
propagation. In the following section we consider 
plasma waves with arbitrary wave vectors. 

3. We now consider oscillations propagating at 
an arbitrary angle with respect to the external 
electric field, neglecting ai because the amplitude 
of the ion oscillations in the external field is small 
compared with that of the electron oscillations 
(ae = a). For oscillations whose electric vector 
lies in the plane formed by the vectors k and E0 
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6E<nJ = ~6E<nJ +[k[Eok]] oE (n) 
k l ki[EokJI tr ' 

from Eq. (3) we have 

6E/"l{1 + 6e;1 (nw0 + w, k)} + _Z: oEz<ml ~ lr-n (a)lr-m(a 
m=-oo r=-oo 

·.x !< , ( + k) + I [kEo] I ~ 6Etr<mJ 
ue e w rwo, kE LJ 

o m=-oo mwo + w 
00 

X ~ lr-n(a)lr-m(a) 6ee1(w + rwo, k) (m- r)wo = 0, 
r=-oo 

00 

r=-oo 

= 3;0 ll~~~l {6E1<n+1l[1 + Oe/(w +[n + 1] w0, k)] 

+oEz<n-1l[1-He;1( w+[n-1}w0. k)]}. 

Using the fact that w0 is small compared with kc, 
we use the second equation to eliminate oE(n) from 

tr 
the first. As a result we find 

m,r=-oo 

m,r=-oo 

+ rwo, k)lr-n (a)[2lr-m (a)+ !,._m+z(a) + lr-m-2 (a)]= 0. 

Multiplying the right side of this equation by 
J s-n(a) and summing over n we obtain an equation 
which allows us to eliminate 

m 

Then the longitudinal field components are de­
scribed by the following system of equations: 

>< ls-n(a)ls-m(a) 
1 + [o<j(w + scu0, k)]-1 

1 [kvE)2 
----
4 c2k2 

X~ 6Et(mi[1+6e/(c•l +mwo,k)]ls-n(a) 
''Yt,S=-oo 

2ls-m (a)+ ls-m-2 (a)+ ls-m+2 (a) 
X =0 

1 + [Bee1(w + Su>o, k)]-1 · 
(18) 

In view of the fact that the growth rate (10) is 
small compared with the ion Langmuir frequency, 
we shall use this approximation in analyzing (18). 

In this case we assume that w0 » WLi and conse­
quently that loEf(w0, k)l « 1 and loEf(w, k) I» 1. 

Then, using Eq. (18) we obtain the following ap­
proximate relation when n ?!- 0: 

"" Oee1(swo+w, k) 
t~Ez<nl = 6Ez<0l{)e;1(w, k) ~ ls-u(a)l8 (a). 

s=-oo 1 + Oee1 ( SWo + w, k) 

The system of equations in (18) can be used in 
conjunction with this relation and m = 0 to write 
the following dispersion relation: 

1 + ~ I.2..c_(a-'-)----::_ 
0E;1 ( cu, k) ,:::00 1 + 8ee1 ( SWo + cu, k) 

_1 [kvE]2 ~ J OE/(sw0 +w,k) 
- 4-----;;2k2, s(a) 1 + 8ee1(swo + w, k) 

s=-oo 

X {l2ls(a)+ ls+z(a) + ls-z(a)] 

x[1-~fr2(a) oe/(rwo+w,k) ]+2l.(a) 
r~oo 1 + Oee1(rwo + w, k) 

Oee1(swo + w, k) x--------
1 + 6e/(swo + w, k) 

J 0Ee1([s+2lwo+w,k) 
+ s+Z(a) 1+oee1([s+2Jw0 +w,k)' 

+ ls-z(a) Oee1([s- 2]wo + w, k) } . 
1+6e/([s-2]c•lo+w,k) (19) 

The expression appearing in the right side of 
Eq. (19) differs from that obtained in the equation 
in an earlier work [1 J in which we investigated 
irrotational oscillations. Since this term contains 
a small factor it has the greatest effect on chang­
ing the spectrum of the irrotational oscillations 
for small values of a. In this case the dispersion 
equation assumes the form 

1 1 1 a2 wo2 1 [kvEJ2 ----·+- -+---~------
oe;'(w,k) 1+oec1(w,k) 2 Wo2 -cuLe2 2 k2c 2 

Oee1(w, k) 
X 1"" + 6Eet(~~-T) = 0. (20) 

We can now obtain the solution of Eq. (20) for dif­
ferent values of the phase velocity: 

2 _ 2 f 1 (kvE) 2 _ 1 [kvEJ21 
W - WL, l_, ----- I W l4>kvre; (21) 

2 wo2 - coLi 2 c2k2 J ' 

f 1 (kvE) 2 -~ [kvEJZ} 
t•>"=wu2 1 (krne) 2 +. ? , 

\. 2 wo-- WLe2 2 c2k2 ' 

') 

icoJ = ( _:.._ 
.:r 

1 4> krne 4> J~; (22) 
WLe 

+ 1 . [kvEF \ _1_" , I co I ~ kvn (23) 
2~f lhni" 

It is evident that at external field frequencies 
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appreciably greater than the ion plasma frequency 
the instability will arise for oscillations propa­
gating in a small range of angles o e :S w0 /ck 
almost transverse to the external electric field. 

Considering non-transverse propagation (a « 1) 
for instabilities for which the frequency of the 
external field is close to the electron plasma fre­
quency we find that Eq. (17) for y is replaced by 
the following equation: 

V• ',2 [ 3 3 (i) .2] 
4-·-, + ~r-2 ~2- ~2~ + --- ~· + -a2 r.,2 

Wr.c WLe . 16 2 UlLe 

a2 Wr.;z 
- ~--,--.~ = 0, 

2 Ul I.e" 

~ = 1 - ( Wr.; 2 - Wo2) / Wr.e2. (24) 

The presence of the term with (3 2 in Eq. (24) 
does not introduce a qualitative change in the re­
sults obtained in [1] in the analysis of equations 
similar to (24) but with f3 = 0. This statement ob­
viously holds only when the propagation if dis­
tinctly not transverse. 

Summarizing the results given above we see 
that instabilities will arise in either a transparent 
plasma or an opaque plasma in a strong high­
frequency field. The solenoidal instabilities that 
have been considered for an opaque plasma exhibit 
a growth rate which is smaller than the growth 
rate for the irrotational oscillations that were 
investigated earlier. [1 J In the region in which the 
plasma is transparent with respect to the external 
field the most rapidly growing solenoidal oscilla­
tions have a growth rate given by Eq. (10). Hence 

the notion of a quiescent collisionless plasma under 
conditions of radiative acceleration of transparent 
plasmoids is valid only for times smaller than 

C/VEWLi· 
In conclusion we wish to thank Yu. M. Aliev for 

his interest in the work and A. A. Rukhadze for 
valuable comments. 
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