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The equation of motion of an isotropic elastic medium, describing the propagation and absorp
tion of sound interacting with thermal phonons, is obtained in a linear approximation. Sound 
scattering on thermal vibrations as well as decay processes are taken into account. An 
expression for the damping constant of the sound is derived for arbitrary values of the 
parameter fif2/T, and different particular cases are analyzed. 

1. INTRODUCTION 

A large number of papers, dealing with various 
particular cases, have been dedicated to the prob
lem of sound absorption in solids. Landau and 
Rumer [t] calculated the damping constant Yt of 
transverse acoustic waves, which is due to their 
coalescence with thermal transverse or longitudinal 
phonons, under the conditions fif2 « KT 0 = T and 
f2 T » l, and found 

'Vt ~ T"q . (1) 

Here f2 and q are the frequency and wave number 
of the propagating sound, K is the Boltzmann con
stant, and T is the relaxation time of the thermal 
phonons. SlonimskHl2J studied the absorption of 
longitudinal sound due to the disintegration of the 
propagating wave into two waves, either both 
transverse or one longitudinal and one transverse, 
in the high-frequency region fif2 » T and f2 T » 1. 
This problem was discussed recently by Orbach 
and Vredevoe [3], who considered, alongside with 
the three-phonon processes, also four-phonon 
interactions which make an insignificant contribu
tion to absorption. Akhiezer [4] dealt with the low
frequency region, tm « T and Q T « 1; he found 
the frequency dependence of the damping constant, 
and, as in various limiting cases, also the temper
ature dependence. 

Herring [s] investigated sound absorption with 
account taken of the anisotropy of the solid, and 
showed that the damping constant is given by 

Vt ~ T"q, 

for transverse sound and by 

'Vl ~ T3q2 

for longitudinal sound. 

(2) 

(3) 

Bommel and Dransfeld [ 6] studied experimen
tally the temperature dependence of Y z and Yt and 
found that both constants are proportional to T4, in 
disagreement with Eq. (3). Neither does the rela
tion y z a: T 3q2 conform with the experiments on 
thermomagnetic effects in a quantizing magnetic 
field. Guseva and Zyryanov have shown [7] that 
such experiments yield information about the de
pendence of y on q and T. 

Puri and Geballe [8] measured the differential 
thermal emf due to the nonequilibrium of phonons 
(drag thermal emf) in n-type germanium in the 
presence of a quantizing magnetic field. The drag 
thermal emf and its dependence on temperature 
and magnetic field intensity contradict Eq. (3). In 
the experiments of [8], an essential role in the 
interaction with electrons is played by long-wave 
phonons, the damping of which is due to scattering 
by short-wave thermal phonons. 

In the interesting work of Simons [9] it was 
shown that at low tempe'ratures, when f2 T » 1 and 
fif2 « T, 

'Vl ~ 'Vt "' T"q. (4) 

Using this relationship we can explain the experi
ments described in [6•7] (see C7J ). However, the 
introduction of the damping constant with allowance 
for collisions between thermal phonons and impuri
ties or with one another is not trivial. The diffi
culties here are similar to those which arise in the 
study of ultrasound absorption by electrons in 
metals. The problem can be solved in a way shown 
by Silin [to], who derived the equation of motion of 
a lattice interacting with electrons. A similar 
equation will be derived below for a lattice inter
acting with thermal phonons. Such an equation 
describes the temperature dependence of the 
elastic constants, their space-time dispersion, and, 
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of course, the propagation and absorption of sound. Ma~ (kA., k'A.') = (p2w~(k)w~· (k') )-'/•{[ (B + K ·- 2/s!J.) 

Unlike Simons' results [9], our results for sound x (kk') c'la~ + (!l + 1/,.A.) (kaka' + ka'k11 )] (ee') 
absorption have broader applicability, being valid + (!l + 1f,.A.) (eaep' + ea'ep) (kk') + [{!J. + 1/,.A.) (ea'kp) 
not only when liO « T, but also in the opposite case. + 1;4Aep'ka + 1;2B(e'k) llap] (ek') + [ (~J. + 1/,.A.) (eakll') 

2. THE INTERACTION ENERGY OF SOUND WITH 
THERMAL PHONONS 

The interaction of elastic waves in solids is 
connected with the anharmonicity of the vibrations. 
For not too large displacement amplitudes only the 
third-order anharmonicity is substantial. In an 
isotropic elastic medium one can represent the 
energy connected with this anharmonicity (see, 
e.g., lHJ) by 

W = s dr { ( !J. + 1 ) Ua~UyaUy~ + ( B ; K - ~ ) Uaa ( Uyfl) 2 

+ :2 UapUpyUya + ~ UapUpaUvv + ·~ (Uaa) 3 }. (5) 

Here Ua f3 = au a/ 8x f3, u(r, t) is the displacement 
vector, K and f.J. are the moduli of hydrostatic com
pression and shear, and A, B, and C are the an
harmonic constants. 

At low temperatures the thermal vibrations of 
the medium obey the laws of quantum mechanics, 
while the propagating external sound can be de
scribed classically, assuming the density of its 
quanta is sufficiently large. Correspondingly, we 
present the displacement vector in the form 

u = u0 + u' + u", 

and assume that u0 is caused by the propagating 
sound, while u' and u" are due to the thermal 
motion of the medium. Further, we will make use 
of the correspondence principle and express u' 
and u" through Bose operators of second quantiza
tion, e.g., 

u' = ~ ( 1i )-'f• e~ {bi<~eikr + b"~+e-ikr}. 
kl. 2w~(k)pV 

Here 

bkAbJt;'A,_ bJt;A,(IkA = bkk'c'h).' ' 

eA. is the unit polarization vector, satisfying the 
conditions 

(6) 

A. is the polarization index, k is the wave vector, 
WA.(k) is the vibration frequency, p is the substance 
density, and Vis the normalizing volume. 

With the aid of Eqs. (6) and (5) we find 

W = _!!____ S dr ~ Map(kA., k'!.') {ei(k-k'l•(bt'A'bkA + bkAbtA') 
2V kA 

k'A' 

(7) 

+ 1/,.A.epka' + 1/~(ek')lla~] (e'k) 
+ ((B + K ~ 2/sll) ea'k~' + Bea'ka'] (ek) 
+ [(B + K- 2/3~J.)eakp + Bepka] (e'k') 
+ 2Ck~kp'eaea'llap}, (8) 

Here e and e' are the polarization vectors of 
phonons with indices A. and A.'. 

3. THE DENSITY MATRIX OF THERMAL 
PHONONS 

To describe the thermal phonons we use the 
expression for a single-particle statistical 
operator 

a A i A ~ 
Tt p + T [-f10 + W, p] =I (p), (9) 

where 

Ho = ~liwvbv+bv; v = k, A.; [A, B] =AB-BA, 

and I(P) is the collision operator of the thermal 
phonons with impurities and with one another. 
These collisions become essential and must be 
taken into account when the sound frequency n is 
comparable to or less than the effective collision 
frequency 1/ T of the thermal phonons. The local
equilibrium density matrix is given by 

[Ho + W,po] = 0. (10) 

From Eq. (10) we obtain for the Po matrix elements 
in the H0 representation, in an approximation linear 
with respect toW, 

1 A Nv•0 -Nv0 

-2 Sp [po, ( bv,+bv + bvbv,+)] = Nv011vv• + <D (vv'), 
Ulv•-Wv 

(11) 

N.o = (eTI."'viT -it\ 

It> ( vv') = ~ S dr ei(k-k')r Mall (kA., k'!.') Uap, 

<D'(vv')= ·~Sdre-i<k+k'JrMaa(kA.,k'A.')uaa. (13) 

Small deviations from the local equilibrium are 
described by an addition op, which, according to 
Eq. (9), is given in linear approximation by 

(14) 
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Approximating the relaxation time by 

I(ttp) ~ -6p I 1: 

for the case op ~ u~ ""' exp (- Wt) we obtain with 
the aid of Eqs. (10)-(14), 

1 I 2 Sp [p, ( bv,+bv + bvbv,+)] 

= f\'v06vv' + { 1 - ~ Q + "j ) 
\ Wv- Wv• ! 1: 

+ __ ____g__ __ ~_) 
Wv• + Wv - Q - !/1: · 

1 +Nv,o + lVv 
ft(wv• + mv) <D'(vv'), (15) 

where P = /30 + a/3. 

4. THE EQUATION OF MOTION OF THE LATTICE 

The self-consistent interaction between the 
sound and the thermal phonons leads in the equation 
of motion of the medium to an additional force, 
which can be easily found by variation of W with 
respect to ua fJ. Simple calculations yield for the 
average value of this force the expression: 

It f) ~ ~ 
Fa=--- L:MaB(vv') {ei(k-k')r Sp [p, (bv,+bv + b,.b,,+)] 

2 OXB vv' 

(16) 

Besides this force, allowance for the collision 
integral leads to another force, which appears in 
the equation of motion when the phonon collisions 
transfer momentum to the lattice (scattering from 
impurities and Umklapp processes). When the 
main contribution to T is made by the normal col
lisions between thermal phonons, only the Fa de
termined by Eq. (6) will appear in the equation of 
motion of the lattice, and this is the case we shall 
deal with in what follows. 

Assuming further u = u(q) exp (- Wt + iq · r) and 
taking (15) and (16) into account, we find the equa
tion of motion for the Fourier component u(q): 

(1 7) 

where 

AavOB = /,~vOB + It ~ M av ( vv') M Bd v' v) 
vv' 

is the elastic-modulus tensor renormalized as a 
result of the interaction between the sound and the 
thermal motion of the lattice. Because A. ayo f3 is 
complex, dissipative processes appear, which lead, 
in particular, to sound absorption. 

5. THE DAMPING DECREMENT OF THE SOUND 

The equation of motion of the lattice (17) allows 
one to express the damping decrement of the sound 
vibrations in the general case without the limitations 
due to the relation between lH2 and T. Assuming the 
damping decrement of the sound y = Im Q to be 
small in comparison with the vibration frequency 
Wq = Re Q, we can easily find from Eq. (17) the 
following expression: 

1i'V --
y = -v·LJMn(vv')qYM~s (v'v)q5 u~u,. 

p w' 

{
N v0 - 1Yv·0 1jr: 0 

X CUv•-Wv (Wv•-Wv-CUq)2 +1/r:2 k'-k-q 

1 1 + Nv•0 + Nv0 1/r: 
+ -2 -- + ( I )2 I 1/ 2 Ok+k'-q Wv• Wv Wv• T Wv - Wq -,- 1: 

1 1 + JVv,O + 1Yv0 1/T } . 
'' CUv• + Wv (Wv• + Wv + Wq)2 + 1jr:2 °k+k'-<I ·, 

(18) 

Let us consider the particular cases. 
A. tiwq « T. In this limiting case the last two 

terms in (18) are small in comparison with the 
first one. This becomes evident at T - oo, because 
the energy and momentum cannot be conserved 
when sound interacts with the dominating thermal 
phonons having energy tiwq ""'T. 

Disregarding the two last terms in (18) and 
recognizing that only the scattering at equal 
polarizations A. and A.' is significant in the first 
term, we obtain 

y = !!_ ~ \ ~Mav(vv)q.,MBo(vv)q6UBUa 
p v • (2;r)3 

f)JV} 1lr: 
X --- -o---,-----:-:----=-:---,---:-:--:-

8cuv [ ( 8wvl 8k) q- Wq]Z + 1/1:2 · 
(19) 

This expression agrees essentially with Simons' 
result [9]. A more consistent introduction of the 
damping decrement yields a different angular de
pendence of the integrand in Eq. (19), and, unlike 
Simons' result, y is a function of all three anhar
monic constants. In particular, as pointed out in 
[ 9J, when 1/T « tiwq « T, Eq. (19) yields for 
longitudinal and transverse phonons 

'\'l ~ T'q; Yt ~ T4q. (20) 

The last expression was first obtained by Landau 
and Rumer[1J. It was shown earlierL7J that expres
sions (20) fit well the experimental measurements 
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of the drag thermal emf inn-type germanium. 
B. nwq » T, wq T » 1. In this case the expres

sion for y can be written 

y= nli 'Lf~{Mav(kA,k+q"'')qvM~&(k+q"'',k"') 
ulqp ).).' ( 2n) 

X q&ii~iiae·-llwk/T 6 ( Wi.' (I k + q I)- W). (!c)- Wq) 

+ 1/2Mav (H, q- kA') qvM~& (q- kA', kA) q&ii~iia 

X 6 ( ul1. ( I q - k I ) +w~. ( k) - Wq)}. (21) 

The limits of integration with respect to k are de
termined by the energy and momentum conservation. 

Thus, for example, for the processes 

(a transverse sound quantum t coalesces with a 
longitudinal one l, and a longitudinal sound quantum 
l is formed), the integration over the angle J be
tween the vectors q and k is with the aid of a 
o-function with a pole defined by equation 

cos 'it = 1 I 2 [ ( c2 - 1) q I k + 2c] 

(c = ctJcz, where Ct and cz are the velocities of 
the transverse and longitudinal sound). This equa
tion yields the integration limits with respect to 
the absolute value of k: 

kmin = (1- c)q 12, kmax = oo. 

An estimate of the integral yields for the damp
ing constant 

li(Q12 ) [ {-liw(1-c)}J Yt+l-+l = p p2cz• ( 1 - c2) exp ;Tc qs, 

Q1 =A+ 2B + K + 7~t/3. (22) 

This result with a slightly different pre-exponential 
factor was first found by Orbach and Vredevoe [3 J, 
although it is already contained in the work of 
Landau and Rumer [1]. 

The coalescence of transverse sound with the 
transverse thermal quanta with the formation of 
a longitudinal quantum, i.e., 

t+t-+l 

also yields an exponentially small damping decre
ment of the transverse sound 

Slonimskil [2]. In this case the damping decrement 
has the form: 

Yl-+t+l - Yl-+t+t - liq5 I p. (23) 

Thus, when sound interacts with thermal 
phonons, the damping decrements of longitudinal 
and transverse waves are substantially different 
when nwq » T. However, if the phonon dispersion 
is negligible in comparison with the damping (with 
the level width), then the conservation laws allow 
the decay processes 

t-+t + t, l-+ l + l, 
which yield the following dependence of the damping 
decrement on q: 

Yl - Yt - liq5 I p. (24) 

Equation (24) shows that the damping decrements of 
the longitudinal and transverse sound waves may 
contain temperature-independent terms. 

C. For the processes l + l ---+ l (possible only 
when phonon dispersion is neglected), y can be 
found at any value of nwq /T. Such dispersion 
processes are described by the first term in 
Eq. (18). In this case 

( n ) ( Q22 ) ""s {[ ( lic1k ·) ]-1 
y = 4np p2c/' o dk k2 (lc + q) 2 exp '---;;-' - 1 

[ ( nc1(k + q) ) J-1} - exp -1 T , 

Qz = 2A + 6B + 3K + 4~t + 2C. (25) 

Computation of the integral gives 

-(_!!_)(__!I!__)(_!_ )5; { 24 + ~(~) 
y - 4np p2c/• licz n~t n5 n3 T 

+ !2 ( n;q rH 1 - exp( - ~n;~) J. 
For tiwq « T we have 

y = ( 4:p )(-~:. )(-£: ) q. 
(26) 

If tiwq » T, then 

(27) 

{ nwq 1- c } i.e., unlike the case B, the damping constant is not 
Yt+t-+I - exp - -T ·-1 +---c- . 

exponentially small. This is connected with the 
The damping of the longitudinal sound with fact that the energy-momentum conservation law 

nwq » T turns out to be independent of tempera- allows all k values in the integral (25). 
ture and is described by the second term in Eq. (21), In conclusion we note that a direct experimental 
which takes account of the disintegration of the measurement of the sound absorption in the high-
longitudinal sound quantum into two transverse frequency region tiwq » T is difficult at present. 
ones or into one transverse and one longitudinal Therefore it seems advisable to investigate the 
quantum. Such processes were first considered by differential drag thermal emf in super-strong 
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magnetic fields H > 105 (T 0 ) 2• Such experiments 
may yield quite valuable information on the de
pendence of the damping decrement in the high
frequency region. 

We are grateful to V. G. Bar'yakhtar, S. V. 
Peletminskil', and V. P. Silin for useful discussions 
and valuable remarks. 
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