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We calculate the probability of indirect optical transitions involving absorption or emission 
of phonons in crossed electric and magnetic fields in semiconductors in which the extrema 
of the valence band and the conductivity band are at different points ink-space. It is shown 
that measurement of changes of the absorption coefficient in an electric field considerably 
raises the sensitivity of magneto-optical methods for indirect transitions. These methods 
consequently can be used to determine the band structure of semiconductors. 

1. INTRODUCTION 

MEASUREMENT of the absorption coefficient of 
light, in the case of interband transitions in a quan
tizing magnetic field, is one of the effective 
methods of studying the band structure of a semi
conductor, especially when observation of cyclotron 
resonance is impossible for lack of sufficiently 
high mobility, for in the measurements of magneto
optical effects the cyclotron frequency can be ap
preciably higher. Such measurements, however, 
make it possible to determine only the value of the 
reduced effective mass m* = m*m* /(m* + m*), c v c v 
where m~ and m; are the corresponcding effective 
masses of the electron and the hole Li-3]. 

As shown in [4J, measurements in crossed elec
tric and magnetic fields make it possible to deter
mine the effective masses in each of the bands, 
both from the line shift in the electric field and 
from the frequency difference in the transitions 
that are allowed and forbidden in the absence of 
an electric field. Such measurements were recently 
made [s-7] and gave good agreement between theory 
and experiment n. It was proposed in [s,sJ to 
measure the change of the absorption coefficient 
in an alternating electric field, which appreciably 
increases the sensitivity of the method and makes 
it possible to carry out the measurements even at 
room temperature, when the cyclotron frequency 
wv,o does not exceed the reciprocal relaxation 
time. The use of these methods, however, is 

1 )It was correctly noted in [7 ] that the theory devei'Vped in 
[•] is valid when cE/sH «l),where s = (Eg/4m*)'1', and Eg 
is the width of the forbidden band. This condition is assumed 
satisfied in this paper, too. 

limited to those bands for which vertical direct 
transitions can be observed, that is, transitions 
without a change in the electron momentum. As is 
well known, magneto-optical effects are observed 
in indirect transitions [3 ,B,ls], but because of their 
low resolution these methods are not used in prac
tice in such cases. As follows from the calculations 
presented below, measurement of indirect transi
tions in crossed fields makes it possible to increase 
appreciably the sensitivity of the method, thus un
covering a possibility for employing the method to 
determine the structure of bands between which no 
direct transitions have been observed, and also for 
determining the frequencies of the corresponding 
phonons. Indirect transitions in crossed fields 
take place also in the case of vertical transitions. 
Apparently, however, the greatest interest is at
tached to just nonvertical transitions, when the 
direct transition is impossible. We shall therefore 
consider just this case. 

2. COEFFICIENT OF ABSORPTION OF LIGHT IN 
CROSSED FIELDS 

Let us consider for concreteness a cubic crys
tal in which both bands are not degenerate, the 
valence band has an extremum at the point k = 0, 
and the conduction band has, besides an extremum 
at k = 0, a lower minimum at the point K0 and its 
equivalents. In this case the vertical distance be
tween the bands at the point k = K0, which is equal 
to EKo• greatly exceeds the distance between them 
at k = 0, which is Ego· Then, of all the possible 

types of transitions shown in Fig. 1, it is sufficient 
to take into account only transition I, since the 
probability of transition II is smaller by a factor 
( Eg/ E Ko ) 2 and the prQbability of transitions III and 
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IV, which are connected with the intraband absorp
tion of the photon, is smaller by a factor (n/LMPe) 2 

~ tiwv,O / E g0 than the probability of transition I. 

Here LM = (tie/ eH) 11 2 is the magnetic length and 
Pe is given by (17) below. 

For the transitions indicated above, the absorp
tion coefficient at the extremum Ko is given by the 
expression [S] 

where E 0 is the light-wave field intensity, w0 the 
light frequency, n0 the refractive index, V the 
volume, tiwph the energy of the absorbed or emitted 
phonon, and 

Hcv=~ <viHtlo><oiHzlc>. 
0 Ec-eo±flwpb (2) 

The index v here denotes the initial state of the 
system when an electron was situated in the 
valence band, and the index c denotes the final 
state, when the electron is in the conduction band 
near the extremum K 0, while o denotes an inter
mediate state, when the electron is in the conduc
tion band near the extremum at the point k = 0. 

The operator H1, which describes dipole inter-
action with the light, is of the form [a] 

H el!,'o [ . ] 
1 =-- (pe)e'"'o1 + c.c. 

mwo 
(3) 

(e is the light-wave polarization). The operator of 
the interaction with the lattice vibrations can be 
written in the general form 2' 

Hz= ~ UjmWj(r- Rm)· ( 4) 
m, j 

Here Ujm is the displacement of the j-th atom of 
the m-th cell, the coordinate of the center of grav
ity of which is Rm. The displacement ujm• as a 
rule, is expanded in normal modesC9J. 

According to [4,11 ], if the magnetic field His 
directed along the z axis, the vector potential is 

2)This form of the interaction operator was proposed by 
Peierls[•]. As indicated by Pavlov and Firsov[•o] it in
cludes both the short-range forces (deformation potential), 
and the long-range ones (polarization). Equation (4) is the 
most general expansion of the potential produced by the 
oscillations in powers of the displacement Ujm· Indeed, let 
us consider a perturbation produced at the point r by the 
j-th atom of cell m. Then from the condition that this per
turbation must not change when r and Rm are displaced by 
an integer number of lattice constants, it follows that the 
expansion coefficient Wjm depends only on the difference 
r- Rm• 

FIG. 1. Band scheme and possible types of indirect 
transitions I, II, Ill, IV. 

chosen in the form (- Hy, 0, 0), and the electric 
field is directed along the y axis, then the wave 
functions and the eigenvalues of the electron energy 
are determined, in the effective mass approxima
tion by the following expressions (all the energies 
are reckoned from the edge of the valence band at 
k = 0): 

A. For bands at extremum k = 0 

'¥,,0 = u,,ofr,o(l'), (5) 

were uv,o are the Bloch functions at k = 0 normal
ized to the unit cell; 

(6) 

Here <l>n( ~ - ~v 0 ) is the harmonic-oscillator func
tion, normalized in analogy with (12), ~ = y/LM, 
wv,o = eH/cm; 0 is the cyclotron frequency, and 

* * ' me and m 0 are the effective masses of the hole and 
of the electron. Here 

__ h2k22 _ ( 1 \_ _ 1 (eELM) 2 
ev- -- hwv n+- I eEYv - ---

"2mv * ' 2 / 2 hw v ' 
( 8) 

!Fk2 2 ( 1) 1 (eELM) 
e0 =eg0 +-2····· .+nwo n+-2 -eEyo+ 2 ll .(9) 

mo . lulo 

B. For the band with extremum near K0 

lf'c = exp (iKor) uKofc (r); 

!c (r) = (LxLz) -•;, exp [i (kxx + kzz)] <D (y), 
n kxkz 

WI· [ . /-!12 ~ ,. 2 
<Dnk ,(Y)= (2n If' )'I•L •;,exp l-2·--(~-si) 

x , n. :rt M [!22 

where Hn(~) is a Hermite polynomial 

~~ = LM (kx + /-!23 kz }\, 
/-!12 

(10) 

(11) 

(12) 

(13) 
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(14) 

and the energy is 

nzk,z ( 1' , B (eELM) 2 

Be= Bg + -;;-;- + nwc n + -2 ) - eEyc T '> n , 

where 

.:..m-z \ ' -..~ We 

eH -
We= --l/Mss, 

r 

(15) 

(16) 

Jlik are the components of the reciprocal-mass 
tensor in the coordinate frame connected with the 
E and H, while Mik are the cofactors of this 
tensor 3>. 

When calculating the matrix element we first 
integrate, as usual, with respect to the rapid func
tions within the limits of one unit cell of volume 
r2 and put 

Pe=~5 uo*(r)(ep)uv(r)d3r. 
Q 

(17) 

We proceed analogously in calculating (H2) and put 

1 ~ . 
bpq=~eqi'-j Q.) uK:(r)~WJ(r-Rm)e'qRmu0 (r)d3r,(18) 

j i1 m 

where q is the wave vector of the phonon, eJ is 
qJl 

the phonon polarization vector, and Jl is the number 
of the oscillation branch. 

When summing over the intermediate states in 
the denominator of (2), we can neglect the kinetic 
energies of the electrons and the phonon energy 
compared with the large energy difference Eo == Ego 
- Eg between the extrema of the conduction band at 
k == 0 and k == K0• We can then take Eo in (2) outside 
the summation sign and interchange the order of 
summation and integration. Further, recognizing 
that the functions f0(r) form a complete orthonormal 
system of slow functions and, consequently, when 
integrating over the smooth functions 

'L,;/o(r)/o(r') = 6(r- r'), 
() 

we can immediately carry out the summation and 
integration with respect to one of the coordinates. 
Then, substituting (2) in (1), and calculating the 
matrix element in terms of the phonon functions [9 J, 

J)It is assumed here that the g-factors in both bands are 
identical and that the transitions proceed with conservation 
of spin. Therefore the spin splitting in (5)-(15) need not be 
taken into account explicitly. Generalization to the case of 
different and anisotopic g-factors is trivial. 

we obtain for the transitions involving emission or 
absorption of a phonon of branch Jl: 

r± __ (2rre) 2 1iPe2bk,~. (ni<,~'- + 1 / 2 ± 1/ 2 ) 

K,p. -- eo2m2wocnoPWI<.~Y2 

\ 2 
X ~~j/~kx,kr,n(r)ei(q-K,)r /vkx',kz'.w(r)d3r I 

v 

(19) 

the summation is over kx, k~, kz, k~; n, n', q. We 
allowed here for the fact that the values of q of 
importance in the integral (19) are those close to 
K0, and took outside the summation sign the values 
of bqJl, WqJl, and the average occupation numbers 
nq/l at q == K0• 

We go over in (19) from summation with respect 
to q and k to integration, and represent the square 
of the modulus as the product of two integrals with 
respect to r and r'. We then reverse the order of 
integration with respect to r, r' and q, k. Since 

~ exp[i(q-~)(r-r')] 
q 

= ( 2~)3 5 exp(i(q- ~) (r- r')] d3q = V6(r- r'), 

there remains in (19), after integration with re
spect to q and r', the integral 

in which the integrand depends only on y. We now 
use the Fourier representation of the a-function 

1 +o> . 
6(e)=- 5e's"ds (20) 

2n 
-co 

and integrate with respect to kz and k~, using the 
well known expression for Fresnel's integral 

+oo 'I 
5 exp{-iakz2}dkz=(;J 2 (1-i). 

-00 

In integrating with kx and k~ in accordance with 
(6), (7), (12), and (14), we go over to the variables 
~' == ~ - ~v and ~" == ~ - ~c and use the following 

formula [i 2] 

1 +oo 1 s2 ) --- 5 dt e-at'+ist Hn2(a'1zt) = -Ln (- e-s'f•a, (21) 
2"n! l/n l'a 2a 

-00 

where Ln(x) is a Laguerre polynomial. Then the 
integrand is in general independent of r, and after 
integrating with respect to r we obtain for r~oll 

r ± -r+""J±. KoJJ.- o- LJ nn', (22) 
nn' 
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L ~( (eELMs) 2 ) L ( (eELMs)2 ) 
Xn 2 n 2 ~~ (23) 

,;n, = eg- hwo + hwKol' + hwv(n' + 1/2) + liwc(n + 1/2) 

8-functions of E± , , and the spectrum consists, as 
shown in [3J, of~dividual steps which occur when 
E~' vanishes, that is, when the quantum energy 

becomes sufficient to excite the transition between 
<24) the given Landau levels. 

We see from (28) that the electric field smears 
(25) out the steps and, in principle, a given frequency 

can excite transitions between arbitrary Landau 
To calculate the integral Jnn' we use the inte- _ levels. However, when eEL jnwv « 1 and 

gral representation for the Laguerre polynomials [12 • eELM/liwc « 1 the steps a~ different. Here, as 

fo± = ~ e2(mv"m."),'lope2bKoJl2(nKoP. ~ 1/2 ± 1/2) 
4:rt eo2m2wocnopwK,p.hLM4 

Ln(z) = ~ S (1- t)-1 exp (--z_t -) t-n-1dt. 
2m 1-t 

seen from (24), the center of the step shifts from 
(26) higher frequencies by an amount 

c 

The integration is over the contour It I < 1, which 
encloses the point t = 0. We change over to the 
variables 

1 
X=--, 

1-t 
s' = eELMs (x + y) 'I• 

1"2 
~ 

Y=--, 
1-'t 

X exp ( -s'2 - is'A,nn'). (27) 

We readily see that the derivative of the latter inte
gral in (27) is 

dl/ d')., = -rvn-e-1.'/4 

and consequently this integral is equal to 

1 = 2:rti<I>(-A, I 2), 

where 1 00 

<I> (t) =-=Se-t' dt 
l":rt_t 

is the probability integral. We took account here 
of the fact that Jnn' should vanish when "-nn'- co. 

The indicated ''boundary condition'' corresponds 
to circling the singular point s = 0 in (22) from 
below. 

Integrating with respect to x andy in (27) by 
residues, and taking account of the fact that the 
integrand has poles at x = 1 and y = {3, we obtain as 
a final expression for rR:o JJ.: 

± - + ~ dn dn' [xny;n' 
fKoJl- fo- LJ---- -

nn' dxn dyn' n!n'! 

( ,~, )JI X<l>- . . 
"}"2 eELM(x + Y) '/, x=t, y=B 

When E --- 0 the terms in (28) go over into 

(28) 

~ _ (eELM) 2 ( 1 ~ ) 
8E- 2 -.:---+~ . 

rt(i)v rtwc 
(29) 

We recall that in direct transitions the line has 
shifted with the electric field by the same amount, 
but towards lower frequencies [4]. The difference 
is due to the fact that the direct transitions proceed 
with conservation of the wave vector kx, and then 
the center of the oscillator y0 shifts during the 
transition over the field, and accordingly, as seen 
from (7), (8), (14), and (15), the electron acquires 
from the field an energy which is just double the 
value of the terms quadratic in E in (8) and (15). 
To the contrary, in indirect transitions, the proba
bility has a maximum with Yo conserved, when the 
overlap of the wave functions is largest. Therefore, 
Yo does not change during the transition, and the 
energy difference increases with increasing E. 

It also follows from (28) that the electric field 
leads to the appearance of absorption in the long
wave region lying beyond the edge of the first step. 
Here the absorption coefficient attenuates with de
creasing frequency like 

where Eg(E, H) is the width of the forbidden band 
with account of the shifts produced by the electric 
and magnetic fields. 

As is well known, the long-wave absorption of 
light in semiconductors in strong electric fields 
(the Franz-Keldysh effect) is connected with the 
indeterminacy of the potential energy of the elec
tron, since its motion in the electric field is 
infinite [13]. In crossed fields, when cE/ sH < 1 the 
motion of the electron is finite, and its energy is 
fixed. Therefore the shift indicated above is con
nected with another effect, namely, with the fact 
that the electron can go over from band to band, 
shifting over the electric field and giving up an 
excess momentum kx to a phonon. Accordingly, 
the function r(E) has far from the edge, in accord
ance with (29), the form 
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In f(E) ~ - (eg- nwo)'lz IE 

in place of the form 

lnf(E) ~ -(eg-nw0)';,/E 

given in [13 J. 
One might think that measurements in an elec

tric field would have no advantages at all compared 
with the ordinary magneto-optical effect, owing to 
the smearing of the steps. However, if we measure, 
as proposed in [5J, a change of the absorption coef
ficient in an alternating electric field at the second 
harmonic, then sharp peaks will be observed in 
place of the steps on the dT/dE 2 curve. As seen 
from (28) and Fig. 2 which shows a plot of T(w0) 

for the first lines, dT/dE 2 increases without 
limit near the steps. However, since the steps 
become smeared out even for E = 0 owing to the 
finite relaxation time of the electron and of the 
hole, it is necessary to take explicit account of 
this smearing in the calculation of dT/dE 2• 

t.EEz 

FIG. 2. Absorption coefficient vs. frequency for different 
values of the electric field, for the first two lines 
k = eELM/Iiwe (it is assumed here that we = wv and f3 = 1). 

3. VARIATION OF THE ABSORPTION COEFFI
CIENT IN WEAK ELECTRIC FIELDS 

Let us calculate the variation of r in the case 
when the smearing of the step by the electric field 
is smaller than the smearing connected with finite 
relaxation time T. As shown by Korovin and 
Kharitonov [14], the relaxation time of the electron 
in a magnetic field depends, generally speaking, on 
n and kz. However, for simplicity we can introduce 
the average time Tn, which depends only on n and 
correspondingly include into the 6-function a damp
ing Ynn' = h(1/Tn + 1/Tn'), that is, we can write in 
lieu of (20) 

1 +oo 
b(enn')=- 5 dsexp(isenn'-'\'nn'lsl). (31) 

2:n: -oo 

We include the indicated damping in (23), in 

which we expand all the factors in powers of E 2. 

Then, recognizing that Ln(x) lx- 0 = 1 - nx and 
confining ourselves to first-order terms in E 2 we 
obtain 

1 +oo 
Inn'= - 2 . ~ ds exp(ise~n'- '\'nn' Is I )[s-!- illeE 

:n:~ -00 

where E~n' = Enn' (E = 0), and b.EE is defined by 
(29). After evaluating the integrals (32) in accord 
with (18), we obtain 

0+ 
± + ...., { ( 1 1 _1 en-;,' ) fKo!! = fo- L_j ---tan --

nn' 2 :n: '\'nn'; 

'\'nn' { 1 ( 1 + ~ ') 
( e~~~ ,)2 + 'Y~ n' 2 nwv hwc ' 

0+ 

( e~,) ~n: V~, J ( n' + {) + ~ ( n + ~) J } } . (33) 

It is seen from (33) and from Fig. 3, which shows 
a plot of dT(w0) /dE 2 for the first lines, that near 
each step where the corresponding Eo±, vanishes, 

nn 
the dT(w0)/dE 2 curve has two peaks, one positive 
and one negative, to the right and to the left of the 
point E:' = 0. Measurement of the distances be
tween the lines corresponding to different n and n' 
makes it possible to determine the corresponding 
frequencies We and Wv, and also the frequencies of 
the phonons of the different branches with wave 
vector K0• The experiment should yield in this 
case a set of lines corresponding to different non
equivalent extrema, and measurement of We as 
functions of the field orientation, just as in experi
ments on cyclotron resonance, makes it possible 
to determine the components of the effective-mass 
tensor in both bands. Explicit expressions for the 
angular variation of .we in terms of these compo
nents are given, for example, in [11J. The long
wave "tail" connected with the indirect transitions 
defined by (29) should be observed also for vertical 
transitions at those frequencies for which direct 
transitions are still impossible. Apparently, the 

FIG. 3. llrE vs. ( E g - ti w0 )/y for the first two transitions 
and weT = 3. The solid vertical lines correspond to the points 
at which En~'= 0. 
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absorption observed in [6] near the direct transi
tions is connected just with this effect, whereas the 
absorption of still longer wavelengths observed in 
[ 6] can be related to the nonvertical indirect transi
tions considered above. However, the data in [6] 

are insufficient for a detailed comparison of theory 
with experiment. 

In conclusion the authors note the part played 
by A. I. Ansel'm, G. L. Bir, V. L. Gurevich, E. K. 
Kudinov, V. D. Lal'khtman, S. T. Pavlov and Yu. A. 
Firsov in a discussion of the present work, and are 
grateful to them for useful advice and remarks. 
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