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A new mechanism is considered for the anomalous penetration of a radio-frequency field into 
a metal, leading to the appearance of a periodic system of narrow and slowly decaying peaks. 
The effect should occur in pure single crystals of metals in a magnetic field directed at an an­
gle to the sample surface. The form, amplitude, and the law of decay of the peaks with dis­
tance are investigated. 

1. Recently, several theoretical and experimental 
investigations have appeared[ 1- 5J dealing with the 
anomalous penetration of a high-frequency elec­
tromagnetic field into a metal in the presence of a 
strong (constant and uniform) magnetic field H. In 
these investigations, it has been shown that slowly 
decaying high-frequency field and current peaks 
appear in the interior of a metal at large distances 
from the surface. Such an unusual distribution of 
an alternating field in a metal is due to the differ­
ent mechanisms of the selection of electrons which 
interact effectively with the electromagnetic field 
near the surface of the metal and those which give 
rise to new "skin layers" in the interior of the 
sample. If the dispersion law of electrons differs 
strongly from the quadratic form, the cyclotron 
resonance plays the role of this mechanism when 
the magnetic field is strictly parallel to the metal 
surface and the field frequency is high. [ 1J 

Low-frequency field peaks, predicted earlier, [2J 

are due to the fact that at low angles of inclination 
of the vector H to the surface the main contribu­
tion to the current is made by electrons near the 
central cross section of the Fermi surface. Having 
practically the same orbit diameter in a magnetic 
field, these electrons reproduce "skin layers" at 
depths which are multiples of the orbit diameter. 
The anomalous penetration of an electromagnetic 
field into a metal also takes place during the exci­
tation of natural weakly damped electromagnetic 
oscillations by an external wave. [ aJ 

Gantmakher and one of the present authors[ 4 J 

have investigated the field distribution in a plane­
parallel plate. The observed impedance singulari­
ties are due to the phenomenon of periodic focus-

ing of "effective" 1> electrons in a constant mag­
netic field, parallel or inclined to the metal sur­
face. The "ineffective" electrons may be focused. 
in a perpendicular magnetic field. [ 5J When elec­
trons are "ineffective," the electromagnetic field 
distribution established by them in the interior of 
a metal obeys an harmonic law, in contrast to 
those cases when the anomalous penetration of a 
high-frequency field is due to the "effective" elec­
trons and the field distribution is characterized by 
narrow quasi-periodic singularities. From the 
mathematical point of view, the appearance of field 
peaks periodic in space is explained by the pres­
ence of various singularities in the Fourier com­
ponent of the conductivity u (k) expressed as a 
function of the wave vector k. Thus field peaks 
due to an "orbit chain"[ 1• 2J are caused by a sharp 
reduction in the conductivity u(k) at the values 
k = kn = 27m/D. The singularities in the distribu­
tion of an alternating field are due to a periodic 
system of delta-shaped maxima of the conductivity 
u(k) expressed as a function of k.[ 4J Finally, the 
anomalous penetration of a field in the focusing of 
the "ineffective" electrons [ 5J is associated with 
the existence of a single branching point of the 
function u(k) near the real axis of k. 

In the present study, we deal with a different 
mechanism of selection of the "effective" elec­
trons, which also leads to an anomalous penetra-

l) The "effective" electrons are those which over some 
part of their trajectory move parallel to the surface of a 
metal. In the anomalous skin effect, these are the electrons 
which make the principal contribution to the high-frequency 
current. 
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tion of a radio-frequency field into a metal. In 
contrast to the cases investigated earlier, this 
mechanism is important at relatively large angles 
of inclination <I> of the magnetic field with respect 
to the surface. This mechanism can be described 
as follows. It is known that in a magnetic field the 
condition of resonance interaction with an external 
wave of frequency w is satisfied by electrons for 
which 

where vt is the projection of the electron velocity 
onto the direction H, Q is the cyclotron frequency, 
and k is the wave vector. For simplicity, we 
shall consider electrons with an isotropic quad­
ratic dispersion law. In the anomalous skin effect 
(kv /fJ » 1), the dominant role is played by the "ef­
fective" electrons, satisfying the condition 

kv = hl. ( 1.2) 

The relationships (1.1) and (1.2) define those 
electron states on the Fermi surface which make 
the main contribution to the conductivity. Figure 1 
shows these states schematically; the horizontal 
line (y axis) is the projection of the curve k · v = w 

onto the yz plane. The small vertical marks on 
this line represent the states (1.1), which satisfy 
the condition (1.2). A change in the wave number 
or the magnetic field alters the number of possible 
states (1.1) [i.e., the number of different values of 
n, for which there are solutions of Eq. ( 1.1) ]. In 
other words, a group of resonance electrons ap­
pears (or disappears). Consequently, the conduc­
tivity a(k) should exhibit sharp discontinuities at 
those values of fJ or kt, which satisfy the rela­
tionship 

(1.3) 

The subscript "ex" denotes that the value of vt 
should be taken in one of the cross sections ±ptex· 
Such discontinuities have been predicted[SJ for 
the absorption of ultrasound and have been discov­
ered recently in antimony by Korolyuk and Matsa­
kov. [ 7J The presence of periodic conductivity dis­
continuities leads to the anomalous penetration 
into a metal of individual harmonics of a wave 
packet, whose wave numbers k satisfy the condi­
tion ( 1. 3). Since, in a skin layer, all the harmonics 
are excited in phase, they; interfere in the interior 
of the metal and give rise to a periodic system of 
narrow peaks with a space period equal to 
(27T'vt/Q) sin <1>. The width of the peaks is governed 
by the number of interfering components, i.e., in 
the final analysis, by the depth of the skin layer. 

FIG. 1. Projection of the 
Fermi sphere onto the yz plane. 

The decay is governed by the electron "lifetime," 
i.e., by the mean free path. The effect is strongest 
for an electromagnetic field E linearly polarized 
along the y axis. In a magnetic field perpendicu­
lar to the surface, the peaks disappear because 
the two conditions (1.1) and (1. 2) are compatible 
only when n = oY The angular criterion, for 
small values of <1>, has the form 

$ ':P 6 I R, ( 1.4) 

where 6 is the effective depth of the skin layer, 
R = v /fJ is the characteristic dimension of the 
electron orbit in the magnetic field. As the angle 
of inclination <I> is decreased, the extremal cross 
section approaches the limit point. The disconti­
nuities of the conductivity a(k) are replaced by 
delta-shaped maxima. [ 4J For large values of <1>, 

the condition has the following form: 

$ < ( 6 I R) 'is. (1.5) 

This inequality follows from the requirement that 
electrons near the special point should be "effec­
tive." The characteristic angular dimensions 1./J 

in the vicinity of the limit point should be greater 
than the angle of inclination of the magnetic field 
<1>. The quantity 1./J is of the order of (o/R<I>)112, [ 4J 
from which follows the relationship (1. 5). 

In the next section, we shall develop a detailed 
theory of this effect. 

2. To find the field distribution in the interior 
of a metal, it is necessary to solve Maxwell's 
equation 

fJ2E(z) 4niw . . 
-~a;:-;;-- = - ~2- 1 (z)' 

Z" C 

(2.1) 

where E(z) and j (z) are the y components of the 
electric field and current in the metal. The z 
axis is selected along the normal to the surface, 
and the y axis along the projection of the magnetic 
field on the surface of the metal. 

We shall consider only one equation in (2.1) 

2 ) In the case of a complex dispersion law for electrons, 
when curve (1. 2) does not lie in one plane, the effect should 
be observed also in normal fields. 
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since, as pointed out already, the effect occurs 
only in the presence of the y component of the 
field E(z). 

The current density j(z) should be calculated 
using the transport equation for the electron dis­
tribution function: 

. 2lel \' 3 . J =- -h3~, d pvyj, 

af af afo 
- i(J)f + Uz-- + Q-:- + vf = lei E(z) Vy-~-. 

fJz fJr: 8s 

(2.2) 

(2.3) 

Here, f is the nonequilibrium correction to the 
Fermi distribution function f0(£ - f.l); - I e I is the 
electronic charge; h is Planck's constant; v is the 
frequency of collisions between electrons and 
scatterers, which we shall assume to be constant; 
v is the velocity, p is the momentum, and £ is 
the energy of electrons; f.l is the chemical poten­
tial (Fermi energy); T is the dimensionless time 
(phase) of the electron motion along an orbit in a 
magnetic field. 

A boundary condition must be specified for Eq. 
(2.3) at the metal surface z = 0. Usually, the dif­
fuse reflection condition is employed. However, 
since the main contribution to the current density 
is made by electrons which move parallel to the 
metal surface, collisions with the surface need not 
be allowed for. The allowance for such collisions 
gives only an unimportant (in our case) numerical 
multiplier of the order of unity. [ 8• 1l Therefore, 
to an accuracy within this multiplier, the nature of 
electron scattering at the boundary is of no im­
portance and we can use the solution of the trans­
port equation for an infinite metal. 

We shall go over to the Fourier components 
along the coordinates in Eqs. (2.1)-(2. 3). Expand­
ing the field E(z) and the current j (z) as even 
functions to the region z < 0, we obtain 

(k2- i4nwc-2a(k)] [g (k) =- 2£'(0), 

00 . 1 
fC (k) = 2 S E (z) cos Ia dz; E (z) = n S fC (k) cos kz dk. (2.4) 

0 0 

The Fourier component of the conductivity is given 
by the formula [ 2J 

3Ne2 " 2n ~ 
a(k)= 4nmQ .\d8sin8 .\ dr:ny(-r,8) S dr:'ny(r:',8) 

0 0 -oo 

(2.5) 

where N = 87rp8/3h3 is the electron density, Po is 
the Fermi momentum, n(T, e) = v/v0 is a unit 
vector along the direction of the electron velocity 

vector on the Fermi sphere; 
nx = sin 8 cos r:, 
nv = cos <D cos 8- sin 8 sin r: sin <D, 

nz = sin <D cos 8 + sin 8 sin r: cos <D, 
e is the polar angle and T is the azimuthal angle 
in the velocity space with the polar axis along the 
magnetic field H. 

We shall consider low frequencies, when 

<D~V. (2.6) 

We can then neglect the quantity w in the exponent 
of the exponential function in Eq. (2. 5). Under the 
anomalous skin effect conditions 

kR ';> 1. (2.7) 

Therefore, the integrals with respect to T and T' 

can be calculated using the constant-phase method. 
The constant-phase points in Eq. (2. 5) are given 
by Eq. (1.2), in which the quantity w must be 
taken as equal to zero in view of the condition (2.6). 
The line of the constant phase points k • v = 0 lies 
in the range of angles <1> ::s e ::s 7r - <1>. 

Simple calculations give the contribution of the 
constant-phase points in the form 

n-<D 

a(k) = 3l\"e2 Re \ d8 sin 8 2; { ny2 (r:a, 8) lla(8) 12 

4nmQ :r, 

e2;r(v+1q(O)J + 1 
x------

2 (e2:r(v+iq(O))- 1] 

+ ~ [ ny(Ta, O)nv(r:B, 8)la(8)JB• (8) 
ra-~·t<rf)<ra 

~~ 

xexp .\ (y + iq)dT) J [1- e-2;r(v+iq)J-1}, (2.8) 

v 
y =~2' 

Ta 

kuz(r:, 8) 
q(r:, 8) = Q 

_ kvz kv sin <D 
q(8) = Q- ---g-cos 8. (2.9) 

The constant-phase points T a( e) are the solutions 
of the equation 

nz(T, 8) =sin 8 sin T cos <D +sin <D cos 8 = 0; 

sin Ta(8) = -tg <D / tg 8. (2.10)* 

The quantity J a (e) has the form 

(2.11) 

*tg "' tan. 
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The formula (2.11) gives, in the limiting cases, 

la(8) = (2n/ jqa'l)'hexp (- 1/4nisignq,/), 

jq,:/j 3 ~ jqa"l 2, (2.12) 

In the formula (2. 8) the main contribution to the 
conductivity u(k) is made by those ranges of the 
values of e, which satisfy the condition of reso­
nance interaction ( 1.1): 

q(8) = kvz(B) I Q = n. (2.14) 

At high values of the quantity I kv sin 4>/Q I , the 
majority of the solutions of Eq. (2.14), e = en, fall 
within the interval q, < e < (7r - 4>). Only at certain 
intervals of the wave vector k and the magnetic 
field H do solutions exist of Eq. (2.14) in the form 
e = 4>, (7r - 4>), which coincide with the limits of the 
range of integration in Eq. (2.8). 

We shall consider first the contribution of all 
the "internal" points e =en [4> < en< (7r- 4>)]. Us­
ing the expression (2.12) for Ja and the formula* 

1 1 "" 1 
-----:-ctgn(ij-iy)=-. ~ -.--.--
2~ 2m n=-ooq- ~Y- n 

we obtain 

3 Ne2 00 "-,~ • y ~ ny2(Ta) 
a0(k)=-- ~ d8sm8 2 +( ) 2 ~ lq~'l · 4n mQ n=-oo ::r, y q - n ~ ~ 

Replacing the resonance multipliers with a­
functions and using them to calculate the integral, 
we obtain 

nma~ 

3 Ne2 ( n ) 2 1 
ao(k) = 2 mkv ~ \ -x;r- (M2 - n2 ) 'h-' 

-nmax 

where nmax represents the largest integer con­
tained in M = I kv sin q, cos q, /Q 1. Replacing the 
summation with respect to n by an integral 
(nmax » 1), we obtain 

3n Ne 2 

ao(k) = 4 mkv · (2.15) 

The formula (2.15) represents an asymptotic 
expression for the Fourier component of the con­
ductivity in the anomalous skin effect in the ab­
sence of a magnetic field. 

The singularities (sudden jumps) of the function 
a(k) are due to the contribution of the limits of the 
range of integration to the conductivity a(k) be-

*ctg ~cot. 

cause the quantity q = kVz/Q, considered as a 
function of v z• has no extremum within the range 
of integration. A singularity is obtained at 

(]ex::::; n; y < 1. (2.16) 

In integration near the limits for Ja(e), we have 
to use the expression (2.13) (for an estimate, see 
[ 61 ). Near the singularity, we have 

A [ n (' ku - n ) J ~a(k)=-~ --arctg --- , In I h 2 y 
(2.17)* 

9 ( 1' Nez 
A = - - 6'/J f 2 - ) - I cos <D I ; 

:rt2 3. mQ 

v . 
u =-Ism <D cos 1>1. (2.18) 

Q 

From the formula (2.17), it follows that ~a(k) does 
indeed have a discontinuity when ku is varied near 
integral values. At high values of n, we have the 
ratio 

a0 (n/u) /~a(n/u) ~ n'h5>1. 

Knowing the nature of the function a(k), we 
shall find the field distribution in a semi-infinite 
metal at large distances from the surface. 

From the formula (2.4), we have 

- _E(z)_ = ~ r dk cos kz [k2 - i 4nw cr(k) J-t 
E' (0) :rt ~ c2 

(2.19) 

We shall integrate the expression (2.19) by 
parts. The results are as follows: 

E(z) 2 r { d [ 4nw Jt - ~E· , = - 1 dk sin kz - k2 - i- cr (lc) .f 
(0) nz 0 dk cz 

X [ ( k2- i 4~2w cr(k) rr1
. (2.20) 

At large distances from the surface of a metal, 
the terms in Eq. (2.20), which contain derivatives, 
with respect to k, of smoothly varying functions 
of k, make an exponentially decreasing contribu­
tion. The anomalous penetration of the field to 
great depths into a metal is due to that term which 
contains the derivative d~a(k) /dk. Retaining only 
such terms, we obtain 

E(z) _ u SiwA ~ 1 
---- ---- L_j-

E' (0) - z c2 n=t n"!, 

X r (k2- ~::~~~~~·(k)-)2 yz+(ku-n)Z (2. 21) 

Since, at low values of 'Y , the function 
'}' /['}' 2 + (ku- n) 2] behaves as a a-function, the for­
mula (2.21) may be written as follows: 

*arctg = tan·•. 
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(2. 22) 

(2.23) 

From the formula (2.22), it follows that the sum 
with respect to n is a periodic function of z with 
the space period 

2nv 
~z = 2nn = Q I sin cD cos cD 1. (2. 24) 

We shall investigate the behavior of the function 
00 

nents of the function 

P(t) = r dxsin(tx)x'" 
·~ ( x 3 - i)2 ' 

(2.30) 

found by numerical integration. Figure 3 shows 
schematically the form of the peaks in the interior 
of a metal. The width of the peaks is of the order 
of 60 and their decrease with distance (number) is 
represented by the function 

( z ) 2nu exp - --
l sin cD cos cD z · 

(2. 31) 

S(x) = ~ Bn sin nx 
n=i 

within the limits of one period. Since 

4nwu2ao ~ 
---=-2-/1, 

(2.25) The amplitude of the first peaks is M 213 times 
smaller than the amplitude of the field near the 
metal surface. 

c 
(2.26) 

only the large values of n are important in the 
sum with respect to n and therefore this sum can 
be replaced by an integral. Then, instead of 
u0(n/u), we can use the asymptotic expression 
(2.15): 

S (x = r dn sin (nx) n'la = _1_ 5 dt sin(tx M) t'h ) ·! (n3-iM3)2 M"lao (t3-i)2 '(2.27) 

where 

M = n/ llo ~ 1; 

The quantity 60 is the effective depth of a skin 
layer in the anomalous skin effect, and 60 « u. 

Finally, at large distances from the metal sur­
face 

E(z) . 1 ( -z )2nu (z~ - = za exp -- S -• floE' (0) M'la sin cD ll sin cD cos cD I z u ' 

a = - 6'/s r 2 - ~ 2 8· 12 ( 1) 
n• 3 · ' (2.29) 

Figure 2 shows the real and imaginary compo-

!mP(t) ~- (\ 

-~72'<Q/Fio ,-

FIG. 2. Dependence of the real and imaginary compo­
nents of the functions P(t) on t. 

Our treatment applies to the case of an iso­
tropic quadratic dispersion law for electrons. The 
effect will obviously occur also in the case of a 
complex nonquadratic electron spectrum. Then 
the space period of the peaks will be given by the 
formula 

(2. 32) 

where S(Jl, PH ex> is the area of the extremal 
cross section ~f the Fermi surface. The ampli­
tude of the peaks is maximal for an external elec­
tric field polarized linearly along the electron 
velocity vector at the point kv = 0, IPH I= PH ex 
on the Fermi surface. ' 

Such anomalous penetration of an external radio 

E 
Re cl'oE'(O) 

E 
Im .SoE'(Oj 

z 
21fu. 

FIG. 3. Distribution of the real and imaginary compo­
nents of the field [E(z)/o0 E'(O)] in the interior of a metal 
(the ordinate gives the field in arbitrary units; M = 100). 
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wave into a metal may be detected by observing 
the high-frequency size effect in a plane parallel 
plate. [ 4, SJ The emergence (or absence) of the next 
peak on the other side of the plate will give rise to 
corresponding singularities in the experimentally 
measured surface impedance. 
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