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A numerical calculation is carried out for the conditions of appearance of virtual and local 
magnetic oscillations in a Heisenberg ferromagnet with a simple cubic lattice containing an 
impurity magnetic atom. It is shown that only virtual levels of the s type can arise on the 
bottom of the spin-wave band and only in those cases when the exchange coupling between the 
impurity and the atoms of the matrix is weaker than the exchange coupling between the atoms 
of the matrix. Approximate formulas are also obtained for the density of states near the bot­
tom of the band and, respectively, for the spontaneous magnetization at low temperatures for 
a ferromagnet with an impurity. 

1. AT the present time there exists a general 
spin-wave theory of a ferromagnetic crystal con­
taining an impurity magnetic atom having a spin 
and exchange integrals different from those of the 
atoms of the matrix. [ 1• 2 J If one is limited to the 
nearest-neighbor approximation for the exchange 
interactions of the atoms, the perturbation intro­
duced by the impurity is a local one, and all the 
general conclusions obtained at one time for sys­
tems with a continuous spectrum [ 3] are valid for 
the analysis of the energy spectrum. In particular, 
the changes in the density of states of the energy 
spectrum are resonant in character. For a mono­
atomic ferromagnetic crystal with a simple cubic 
lattice the density of states g(E) in the spin-wave 
spectrum, calculated for one atom (N is the total 
number of atoms in the crystal), is in this situation 
described by the following formula: [ 2] 

1 D'(s) 3 D'(p) 
g(E) = go(E) + Nn lm D(s) + Nn ImD(p) 

2 D'(d) 
+ Nn Im D(d) ' 

(1) 

where ~?:Q(E) is the density of spin-wave states of 
an ideal crystal, the prime indicates a derivative 
d/dE with respect to energy E, and the quantities 
D(s), D(p), and D(d) are functions of E (they are 
defined for the values E - i6; 6 = 0+) 

D(s) = 1 + E +-p-E- [ (e- p)E + _P_E2J G110(E) 
2!Sz ,2fSz ' 

(2) 

We denote the spin of an atom of the ideal crystal 
and the exchange integral between nearest neigh­
bors by S and J, the spin of the impurity atom 
by S', and the exchange integral between the latter 
and its nearest neighbors in the matrix by J'. The 
perturbation parameters £ and p are 

E = J' I J- 1; p = J'S' !JS- 1. (5) 

The quantities G~m(E) in Eqs. (2)-(4) are the 
Green functions of the spin waves of the ideal 
crystal: 

G O(E) = __1._" exp {ik(Rn- Rm)} (6) 
nm N LJ E - [g k ' 

k 

where [gk is the energy of the spin wave with 
quasimomentum k. The impurity atom is at the 
site n = 1. Besides G~l> we also have G~4 , which 
couples two arbitrary neighboring atoms in the 
first coordination sphere, appearing in Eqs. (2)­

( 4), and G~3 couples two arbitrary opposed atoms 
(relative to the impurity atom) in the same 
sphere. 

By separating the real and imaginary parts of 
the expressions 

D(fl) =D(f,t,E-io) =ReD(fl) +ilmD,(fl) 

(f,t = s,p, d), 

we can now write down in these terms each of the 
additional terms in the density of states (1): 
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~llg(E)==_!_Im D'(!t) 
n D(ft) 

1 ReD(!t)ImD'(!t)- ReD'(!t)ImD(ft) 

n [ReD (!t) )2 + [Im D (!!) )2 

If at some point E = E~ the quantity 

Re D(ft, E .. 0) = 0 

and Im D(J.L) is small at the same time, Eq. (7) 

(7) 

(8) 

has a sharp maximum near this point. The form of 
the function (7) near the singular point can be ob­
tained approximately by expanding Re D(J.L, E) in a 
series: 

ReD (ft, E:) = ReD' (ft, E!!o) (E- J;;!!O) + ... 
In this case we have for E ~ E~ 

1 ,r .. 
~!!g(E)=-;- (E-E!!o) 2 +:f .. 2' 

(9) 

and the quantity 

r!! = -1m D(ft, El!0) IReD' (ft, E!!0) ( 10) 

characterizes the width of the maximum. 
If the solution of Eq. (8) E~ lies above the top 

of the spin-wave band of the ideal crystal, it is 
easy to see from Eqs. (2)-(4) that Im D(J.L, E~) = 0, 
and hence r as well. In this case Eq. (9) reduces 
to the follow'tng 

(11) 

This means that the system has an isolated dis­
crete level, called a local level. In a simple cubic 
crystal there are three types, corresponding to 
values of J.L equal to s, p, and d, and the p-level 
is triply degenerate, the d-level doubly degenerate. 
The coefficients 3 and 2 in Eq. ( 1) in fact indicate 
just this degeneracy. 

If Et falls in the band of the continuous spec­
trum, then r J.L is non -zero and the change in the 
density of states near E~ is described approxi­
mately by the Lorentz form (9). An important fact 
is that rJ.L can be not only positive but also nega­
tive. If rJ.L > 0, we have a jump in the density of 
states, and we shall treat this situation as the ap­
pearance of a virtual level E~· in the system. In 
the opposite case rJ.L < 0, there is a dip in the den­
sity, corresponding to the so-called antiresonance 
point. As a rule, in fact, Eq. (8) has two solutions 
for any J.L , one of which corresponds to the reso­
nant peak in the density of states and the other to 
the dip, so that the total change in the density of 
states is equal to zero, since the total number of 
states both for the ideal crystal and for the crys­
tal with impurity is N. 

2. The determination of the energies of the 
local or virtual states obtained from setting the de­
terminants of (2), (3), and (4) to zero can only be 
made numerically. The necessary Green functions 
G~l> G~ 3, and G~ 4 (their real and imaginary parts) 
for the simple cubic lattice have been calculated 
by Wolfram and Callaway, [ 1J whose data we shall 
use here. We begin with an analysis of p- and d­
type oscillations, which is simpler than for the 
s-type. According to (3) and (4), the equations de­
termining the energy of these oscillations can be 
written in the following form: 

(12) 

It is seen that the p- and d-type oscillations are 
characterized by the single parameter p (whereas 
the s-type depend on the two parameters p and£). 
The parameter p can vary in the interval 
-1 < p < oo , hence the quantity 2 I p takes values 
-oo <2/p <-2 or 0 < 2/p< oo; thus the interval 
(-2, 0) is forbidden for the quantity 2/p. 

The right-hand sides of Eqs. (12) and (13) are 
plotted in Fig. 1. The negative values of both 
curves lie in the region of forbidden values for the 
parameters 2/p; hence Eqs. (12) and (13) do not 
have solutions for E near the bottom of the band 
(the width of the spin-wave band is 24JS). There­
fore, we have to conclude that in a simple cubic 
lattice there are no p- and d-type levels at the 
bottom of the band. However, they are possible 
near its top. 

It is easy to determine from Fig. 1 the critical 
values of the parameter 2/p (and then also p + 1 
= J' S' /JS) for which a local or virtual level only 
just appears. We thus arrive at the following re­
sults: 

a) virtual and local p- and d-type levels are 
absent when 

0 < 1'8' I !8 < 4.09 (p), 0<!'8'/18<2.83 

b) virtual levels appear near the top of the band 
when 

4,09 < !'8' I !8 < 5.76 (p), 2.83 < !'8' I !8 < 6.41 

c) local levels appear when 

5.76<!'8'1!8 (p), 6.41<1'8'1!8 (d). 

From this we see that a sufficiently "strong" im­
purity (in terms of the magnitude of the exchange 
interaction) is required for the appearance of vir­
tual or local p- and d-levels. The dependence of 
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FIG. 1. Graphical solution of Eqs. (12) and (13), which 
determine the local or virtual p- and d-type levels in the 
case of the simple cubic lattice. The solid curves describe 
the righthand sides of Eqs. (12) and (13). The dashed 
curves give the imaginary parts of the determinants -D(p) 
and -D(d), viz., curved is 

4!Sim{G11°(E) + G23°(E)- 2G,.0 (E)}, 

and pis 
4!Sim{G!1°(E) -G2s0 (E)}. 

From this it is easy to determine the sign of the quenching 
of the virtual levels. 
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FIG. 2. Energy of the p- and d-levels as a function of 
the parameter] 's '!]S. 

the energy of p- and d-levels on the parameter 
J' S' /JS is shown in Fig. 2. 

In the case of the s-oscillations, the situation 
becomes much more complicated. The position of 
the local and virtual levels is determined from the 
equality to zero of the real part of Eq. (2) and 
therefore depends on two parameters: £ and p. 
Figure 3 shows the results of the solution for sev­
eral of the most interesting values of the parame­
ters u = S'/S as functions of J' jJ. It is seen from 
Fig. 3 that the local s-type oscillations exist for a 
given fixed value of u, beginning each time from 
some value of J'/J, which increases with decreas­
ing u. The larger u, the higher the energy of the lo­
cal oscillation (for a fixed J' /J). When u 2: 1 the 
virtual levels near the top of the band do not exist. 

They appear when u < 1 and can go into the band 
rather deeply. 

For the properties of a ferromagnet at low tem­
peratures, the only region where the spin-wave 
approximation is valid, the virtual levels lying 
near the bottom of the spin-wave band are of 
greatest interest. Their energy is shown as a 
function of J'/ J in Fig. 4 for a wide interval of 
selected values of the parameter u from 0.1 to 
10, and their width r s is shown in Fig. 5. We see 
that these levels appear only when J'/J < 1 and 
their energy depends weakly on u. It can be seen 
from Fig. 3 that for large values of u and in a 
certain region of values of J'/J two s-levels can 
exist simultaneously: one of them is virtual, the 
other local. 
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FIG. 3. Dependence of the energy of the s-oscillation 
on the parameter J '!] for different values of a= S '/S. 

FIG. 4. Dependence of the en­
ergy of the virtual s-oscillation 
on the parameter J 'j J. 
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A practical conclusion of these numerical calcu­
lations is the following: in a cubic crystal there 
are low-lying virtual s-levels for ratios of the ex­
change integrals J'/J < 1. Their energy does not 
depend very strongly on the parameter u in all 
cases of practical interest. 

Figure 6 shows the results of a numerical cal­
culation of the density of states of a ferromagnetic 
crystal with impurity concentration c = 0.01, for 
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FIG. 5. Dependence of the width r s =- Im D(s, E0 /4JS)/ 
ReD'(s, E 0/4JS) of the virtual s-oscillation on its energy, de­
termined by the parameter ] '/] for different values of a. 
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FIG. 6. Density of states g(E/4JS) of a ferromagnetic 
crystal with impurity concentration c = 0. 01 for the cases: 
1-] '!] = 0. 2; a= 0. 25; 2- J '!] = 0. 2; a= 4; 
3-] '!] = 0. 5; a= 0. 25. The solid curve gives the den­
sity of states of the ideal ferromagnetic crystal g0 (E/ 4] S). 

three cases in which virtual levels of the s -type 
exist. 

3. We have investigated numerically the posi­
tion of the local and virtual levels as a function of 
the parameters £ and p. We now attempt to cal­
culate the change in the density of states near the 
bottom of the band. It turns out that this can be 
done analytically if the virtual levels are not lo­
cated close to the very bottom. In every case we 
shall consider a region of E such that the lowest 
virtual level is above it. A still more favorable 
situation for this approach comes about when, for 
given perturbation parameters, the resonant states 
can arise only at the top of the spin-wave band or 
above it, or, for example, in those cases when the 
perturbation is insufficiently strong (the parame­
ters £ and p small) to cause the formation of 
resonant states (Eq. (8) cannot be satisfied for all 

J.l. at any E), and only leads to a smooth redistribu­
tion of the density of states. 

The density of states of the ideal crystal can be 
calculated from the following general formula: 

(14) 

For small E we can limit ourselves to small val­
ues of the quasimomentum, taking for the simple 
cubic lattice ef k = 2JSa2k2 (where a is the lattice 
parameter). Calculation of the integral over k in 
(14) leads to the well-known formula 

g (E)- 1 ·E'f, + o - 4n2(2JS)3f, ... (15) 

Substituting expression (2) into formula (7) for 
J.l. = s and taking into account the last two relations, 
we find in the lowest order in E/2JSz the follow­
ing relation for the change in density of states due 
to oscillations of the s-type: 

llsg(E) ~ 3(a-1)go(E) /2. (16) 

To calculate the contributions from the p- and d­
oscillations it is necessary to find Im G~m· It is 
easy to show that for small E 

J_ Im Gnm0 (E) = !.._ ~ COS k(Rn - Rm) 0 (E- ef k) 
:rt Nk 

{ E (Rn - Rm)2 . ) 
= 1 - 218 6a2 fgo(E) + · · · (17) 

Substituting expressions (3) and ( 4) into formula 
( 7) and taking the last relation into account, we find 
the contribution from one p- and d-state: 

(18) 

or more exactly, D. dg(E) ""' Eg0(E) /2JS, and there­
fore it can be neglected for small E. 

Summing the results (16) and (18) and using (1) 
we express the density of states for small E as 

g(£)={1+~-~(a-1- 2P )}"o(E) (19) 
N 2 1 + 0.2fp "' · 

In the presence of many impurities in the crystal, 
1/N in (19) must be replaced by the concentration 
of impurities c. 

Depending on the parameters a and p there 
can be different signs in the additional term in ( 19), 
i.e., in the presence of impurities the density of 
states may either increase or decrease. If the im­
purity atoms are non-magnetic (a = 0, p = -1), the 
additional term becomes positive. 

4. We now calculate the spontaneous magnetiza-
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tion M of the crystal for the low-temperature re­
gion (T « T c• the Curie temperature), where the 
spin-wave approximation is valid. We use the gen­
eral relation 

~ = (1- c)S + cS'- f g(E)dE (20) 
Ngflo ; eE/kT- 1 . 

In the integral the values E ..S kT are important; 
therefore, if in this energy interval there is no 
virtual state, we can substitute into (20) the rela­
tion for the density of states (19) (in which 1/N is 
replaced by c). As a result we have the usual 
Bloch law for the temperature dependence of M: 

_!!__- = ( 1 - c) S + cS' - { 1 + c · ~ (a - 1 - 2P )} 
Ngflo ~ 2 1 + 0.21p 

(21) 

where 'Y is a numerical coefficient for the ideal 
crystal. A comparison of the temperature depend­
ences of M of the ideal crystal and the crystal 
with impurity for different concentrations enables 
one to determine the parameter p from Eq. (21), 
i.e., in essence the ratio J'/J. 

If, however, there are virtual levels at the bot­
tom of the band in the impurity ferromagnet, 1> then 
as soon as the thermal energy kT becomes with 
increasing temperature comparable to the energy 
of the virtual level E~, formula (19) for g(E) al­
ready becomes inapplicable, and the principal 
change in the density of states is found to have a 
maximum in the vicinity of E~ of the type (9) (see 
[ 41 ). If, neglecting the width of the maximum rs, 
(9) is approximated by the functions o(E - E~), an 
additional term - c { exp (E~ /kT) - 1} - 1 results 
from the integral in (20), which for certain cases 
can be comparable with the Bloch term -y(T/Tc) 312 

(this is determined by the concentration c and 
how close the level E~ is to the bottom of the 
spin-wave band). 

Thus we have the following result: at low tem­
peratures the magnetization decreases according 
to the (T/Tc) 312 law, as in the ideal crystal, but as 
soon as the average thermal energy kT becomes 
close to E~, the magnetization begins to fall 
sharply by virtue of the filling of the virtual levels, 
and the filling of all single-particle virtual levels 
of the s-type leads to a decrease in M/Ngf.-!0 by 

1) A similar effect takes place for the heat capacity of a 
crystal containing a heavy impurity atom (see[s ]). 

the magnitude of the concentration c. However, it 
is physically obvious that in the presence of very 
low-lying virtual levels, when kT exceeds E~, a 
situation comes about whereby the spins of the 
ferromagnetic matrix atoms are in great bulk still 
weakly excited, and the spins on the impurity atoms 
and close to them are already deflected. z> Hence 
to describe the behavior of the spins on the impur­
ity atoms and their neighbors by means of the ap­
proximate transition from spin operators to Bose 
operators according to the method of Holstein and 
Primakoff is already impossible. This phenom­
enon can be observed even at temperatures at 
which we still would not have gotten out of the 
framework of the spin -wave description for the 
ideal ferromagnet. Strong excitation of the spins 
on the impurities produces a further decrease in 
the magnetization of the crystal, but it is not pos­
sible to take this into account correctly by means 
of the density of single-particle states; what is re­
quired is a self-consistent solution of the system 
of equations for the magnetization of individual 
sites, which can be obtained with the aid of the 
Green temperature functions made up of spin 
operators. 

The authors thank E. A. Turov and 0. B. Sokolov 
for helpful discussions of the questions touched 
upon in this paper. 

2 )We recall (Fig. 4) that the virtual levels of the s-type 
appear at the bottom of the band when J '/] < 1; the smaller 
this ratio, the closer they are to the bottom. This means that 
the effect considered appears when the exchange coupling of 
the impurity with the matrix is markedly weaker than between 
the atoms of the matrix. 
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