
SOVIET PHYSICS JETP VOLUME 22, NUMBER 6 JUNE, 1966 

CONTRIBUTION TO THE NONLINEAR THEORY OF TWO-STREAM INSTABILITY IN THE 

PRESENCE OF THE ANOMALOUS DOPPLER EFFECT 

V. B. KRASOVITSKII and V. I. KURILKO 

Physico-technical Institute, Academy of Sciences, Ukrainian S.S.R. 

Submitted to JETP editor June 2, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1831-1835 (December, 1965) 

The nonlinear problem of exciting one-dimensional transverse waves by a beam of electrons 
moving in a retarding medium with a velocity greater than the wave phase velocity is con­
sidered in the hydrodynamic approximation. Solutions are studied which are presented as 
waves with fixed wave number and time-varying amplitude and phase. It is shown that for 
small beam densities the main nonlinear effect limiting the increase in oscillation amplitude 
is the loss of synchronism between the particles and the field as a result of beam deceleration; 
this leads to a periodic change in the excitation and absorption of the field by the beam. The 
maximum oscillation amplitudes are computed and the possibilities of using this effect for 
cutting off beam instabilities by an external field are discussed. 

THE exponential law that holds for the increase in 
perturbation amplitude with time during the growth 
of instability in a system consisting of a decel­
erating medium (plasma) and a beam of charged 
particles is valid only during the beginning of the 
process, when perturbation amplitudes are small. 
For large field amplitudes it is necessary to con­
sider the nonlinear effects of the reaction of the 
excited oscillations on the beam motion, which 
limit the growth of the field perturbation amplitude 
and of the beam velocity. 

When there is no phase correlation of the 
excited oscillations and the excited-field amplitudes 
are small, the reaction of instability on the distri­
bution function of the beam particles is accounted 
for by using nonlinear theory [1 J. In this article 
another limiting case is examined-nonlinear oscil­
lations with fixed phase, excited by a beam of 
charged particles moving along a magnetic field 
with velocity greater than the wave phase velocity 
(i.e., when the conditions of the anomalous 
Doppler effect are satisfied [2 •3 J ) . 

1. The initial system of equations consists of 
the nonlinear hydrodynamic equations of motion for 
beam particles and Maxwell's equations for a field 
in a medium with dielectric constant E = n 2: 

dv ( 1 ,\ 
mdt = e E +-~[v,Ho+H]), 

&N 
Tt+divNv = 0, j = eNv, 

1 &H 
rotE= ---8-, 

c t 
n2 &E 4n 

rotH= ~-+-j. (1)* 
c2 &t c 

*[ v, H0 + H] "' v0 x [H0 + H]; rot = curl. 

It is easy to show that this system of equations 
admits of a solution in the form 

Vx +ivy= ca(t)ei[<I>+tt(tll, 

Ex+ iEy = H 0e(t)eH<I>H(tll, (2) 

where <I> = kz - wt and the z axis is directed along 
the external magnetic field H0. 

In the general case, the system of equations de­
scribing the time dependence of the amplitudes and 
phases of the field and the beam particle velocities 
is very complex. However, it is greatly simplified 
for small beam densities when the increment of the 
excited oscillations is small. It is just this case 
which is examined below. The amplitude of the 
transverse beam velocity a(t), its longitudinal 
velocity Vii = c(3, the phase J, and the field ampli­
tude l/J can be assumed here to vary slowly with 
time, while the field phase l/J is constant (hence­
forth we shall let l/J = 0). 

Substituting (2) into (1) and retaining only the 
leading terms with respect to beam density, we 
obtain the following system of equations for a, J, 
(3 and E 1l: 

da 
d-r: = e(~n-1)cosit, 

d~ 
-- = - nea cos it d-r: , 

e 
--(~n-1)sinit, 

a 

de .1 
-- = -q2acos it 
d-r: 2 , 

dit 
- = 1- Q (~n -1) 

d-r: 

1) We should emphasize that for the space relationship 
chosen by us the latter is eliminated from (1), so that in 
deriving (3) from (1) it is not necessary to use the averag­
ing method. 

(3) 
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where we introduce the notation 

/e/Ho 
(l)H=:---, 

me 

and N0 is the beam density. The condition that the 
beam density be small reduces here to the re­
quirement 'Y « Q ('Y = q(2D)-1/ 2 is the oscillation 
growth increment in units of WH). Terms con­
taining the longitudinal electric field in the equa­
tion for f3 in system (3) are small when D « 1, 
which is also assumed to be satisfied. 

As is seen from system (3), the main source of 
its nonlinearity is the Lorentz force in the equation 
for the longitudinal motion of the beam particles. 
In the linear approximation, ignoring this term, we 
obtain for Q({30n - 1) = + 1 (the anomalous Doppler 
effect condition) 

~ - (3o = ,.. = ,..o = 0, ii - 'fa =' 0, 

i.e., an exponential growth of oscillation amplitude 
with time. 

In the nonlinear approximation, as follows from 
(3), the growth of oscillations is accompanied by the 
deceleration of the beam, which in turn leads to an 
increase in phase and a loss of synchronism be­
tween the particles and the field. An examination 
of system (3) with allowance for this effect is con­
siderably facilitated by the presence of the inte­
grals of motion. In fact, from the first three equa­
tions of system (3) it is easy to obtain the following 
relationships, which represent the law of conserva­
tion of energy and momentum in the system: 

n2a2 + (~n -1)2 = R2, n2e2 + q2~ = nzeoz + qz~o. 
Using these relationships, with the aid of the 

change of variables 

na = R sin 'IJ, ~n - 1 = R cos 'IJ, ds = cos ,..d-r 

we get from (3) 

d21Jl 
---~•2 sin•h = 0 d£2 I 'I' ' 

(4a) 

dX d'IJ 
df= 1- QRcos1Jl-dfctg1JJX, X = sin,.._ ( 4b) * 

A solution to Eq. (4b) with X0 = 0 can be written 
in the following form: 

1 ~ . 
X(s) = -.-\ (1- QRcos1Jl)sin1Jlds'. (5) 

sm'IJ •0 

Substituting sin l/J from ( 4a) into the integrand of 
(5) we find the explicit form of X as a function of 
l/J: 

*ctg =cot. 

X(1jl) = ~-{1-QRcos1jl) d"ljl r sin"ljl d£ 

- (1- QR cos"ljl0) ~0 + ~~ [ ( ~t )3 -~03 ]} , (6) 

where the dot indicates time differentiation T 

(at T = 0, dl/!/d T = dl/J/d~ since J 0 = 0). 
Substituting the expression for X(l/J) from (6) 

into the first integral in (4a): 

( d"¢ )2. 
d-r, =(1-X2){1Jl~2 +2v2 (cos1Jlo-oos1Jl)}, (7) 

we obtain an equation which is first order in l/J, 
from which it is clear that l/J( T) is periodic. 

The most important quantities-the maximum 
field oscillation amplitudes and beam particle 
velocities-can be found knowing the turning point 
of the system: dl/!/d T = 0. In the simplest particu­
lar case when the initial conditions have the form 
l/Jo = 0 and l/J ;1! 0, the turning points of the system 
are determined by the equation X(l/Jrn) = 1, from 
which we obtain, using the small parameter y « 1, 

amax = ~o(6v) 'I•, 'iJo < y'f, < 1; 

amax = 2~o(¢"o)''•. v''•<¢o< 1. (8) 

It is clear from these relationships that, for small 
perturbation amplitudes, the maximum amplitude 
of the transverse velocity is independent of the 
initial conditions, while the amplitude variation 
period has an order of magnitude T ~ 1/'Y. The 
maximum energy consumed in the transverse oscil­
lations of the beam particles and excitation of the 
field is proportional to the increment 'Y (cf. L4J ). 

The second limiting case corresponds to the 
approximation of the specified external field, when 
the polarization fields created by the beam are 
small in comparison with the external field. In 
both cases, the restriction on the amplitude is due 
to the loss of synchronism (resonance) between the 
oscillators and field. Since J (/X I = 1) ;1! 0, this 
nonlinear effect leads, according to (3)-(6), to a 
periodic alternation of the processes of buildup 
and absorption of the field by the beam. 

In conclusion, we should note that the calculation 
given above is a good model of the problem of 
exciting magnetohydrodynamic waves in a dense 
plasma (wb » wHewHi) by an electron beam, since 
in this case all of the foregoing requirements 
(/3 2 2 - f3 2 2 l 

0n - 0wp 1WHeWHi » 1, w << WHi « WHe etc.) 

can easily be satisfied. 
2. It was shown above that in our case the os­

cillation process continues until synchronism be­
tween oscillators in the beam and the field is dis­
turbed. It is of interest to investigate the possi­
bility of disturbing this synchronism with the aid 
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of an external field so as to suppress two-stream 
instabilities. 

The possibility of suppressing two-stream 
instabilities by modulation with external fields and 
by phase stabilization in the external fields was 
indicated by Fal'nberg [5] and experimentally ob­
served by Berezin et al. l 6] The reason for the 
suppression of the instabilities in this case is that 
under our conditions it is the oscillators and not 
the free particles that interact with the growing 
field of the instability. Therefore, unless there is 
resonance between the external field frequency and 
the natural oscillation frequency, the effectiveness 
of the interaction of the beam with the field of the 
developing instability, and the growth increments, 
should markedly decrease. [ 6] The possibility of 
attenuating two-stream instabilities (for Cerenkov 
instability in longitudinal waves) in strong external 
fields was demonstrated and examined in detail by 
Aliev and Silin C7J. 

We shall consider below the suppression of in­
stability for transverse waves excited by a beam 
of electrons in the presence of the anomalous 
Doppler effect. We shall assume that the external 
field is directed along the beam and that its ampli­
tude is so high that longitudinally polarization 
fields can be ignored. In this case longitudinal 
motion of beam particles is completely determined 
by the external field E 11 = E 11 cos 0 0 T. The equation 
for the transverse electric field then takes the 
form: 

d2e 
ds2 - y2 [1- h sin RoT(s)l e = 0, 

(9) 

It is easy to see that ~ ~ T cos a for T » 1. 

Let us investigate (9) for two limiting cases. 
A. Near the instability threshold when h » 1, 

the first term in the square brackets of (9) can be 
ignored. The resultant equation has no increasing 
solutions when 'Y 2h < 1 (when 'Y ~ > l, parametric 
instabilities are possible). Thus, a sufficiently 

strong external field disrupts the instability under 
consideration near its threshold. 

B. When h « 1 (far from the threshold) insta­
bility is maintained; however, its increment de­
creases with increasing external field amplitude, 
'Y ~ff = 'Y cos Q', 

It is easy to show that a similar result can also 
be obtained by modulating the external magnetic 
field. In this case, the quantity h is taken as the 
modulation coefficient in formula (9). When the 
beam is modulated by an external transverse wave 
with frequency 0 0 and amplitude nE0 » y 312, the 
growth increment of the wave with frequency Q 

has far from the threshold the order of magnitude 

Ve-if = V cos R/Ro; Q(1- ~on)+ 1 =- (Q/Ro) (neo)'ia, 

(neo)'f,~ 1, Ro~Q ~ 1. 
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