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A simple analytic expression for the inelastic scattering cross section of a spinless particle 
is derived on the basis of the complex angular momentum method. The expression obtained 
yields the well known Blair phase rule. The results are compared with the experimental data 
on a particle scattering on a number of nuclei. The comparison indicates a very satisfactory 
qualitative agreement between the theory proposed and the experimental data. 

1. INTRODUCTION 

THE theory of the inelastic diffraction scattering 
of nucleons and other nuclear particles on complex 
nuclei has been in a state of intense development 
during the last decade. This development has pro
ceeded along two lines. The first approach starts 
from the Fraunhofer diffraction on a black nucleus, 
using the adiabatic approximation. This method, 
first employed in the papers of Drozdovru on the 
excitation of rotational levels of nuclei, was then 
extended by one of the present authors[ 21 to the 
case of vibrational levels, and by Blair r 31 to the 
case of transitions of arbitrary multipolarity. The 
second approach consists in the application of the 
nuclear optical model for the calculation of inelas
tic scattering by the distorted wave method. The 
results of a number of calculations by this· method 
are presented in the review article of A us tern. [ 41 

Despite the successes in the explanation of the 
characteristic features of the inelastic scattering 
process, both these methods suffer from serious 
deficiencies. The cross sections calculated by the 
first method, when averaged over the oscillations, 
increase slowly with scattering angle, whereas the 
experiments indicate a fast (exponential) fall-off of 
the cross sections. Moreover, the theoretical 
cross sections vanish at the diffraction minima, 
also contrary to experiment. A great difficulty in 
this method is the account of the Coulomb repulsion 
between charged particles. The distorted wave 
method gives results which are in satisfactory 
agreement with experiment. However, calculations 
along this line require a great deal of numerical 
work on electronic computers for each comparison 
with newly appearing experimental data. Moreover, 

the agreement with experiment achieved in this 
way remains to some extent illusory, since the op
tical model is not a sufficiently clearly defined 
concept. In particular, it is not clear, to how many 
parameters one should restrict oneself in calcula
tions using this model. It is also evident that with 
such an approach it is very difficult to obtain the 
qualitative characteristics of the inelastic scatter
ing process. 

In recent papers of Blair, Sharp, and Wilets[ 51 

and Austern and Blair, (SJ a synthesis of the two 
procedures was achieved. It was shown that the 
inelastic scattering problem can be reduced to the 
elastic scattering problem by combining the dis
torted wave method with the adiabatic approxima
tion. This comes about in that the inelastic scat
tering amplitude can be expressed through deriva
tives of the S matrix for elastic scattering with 
respect to the angular momentum. In particular, 
if one takes for the S matrix the simplest expres
sion 

S = { 0, l < l0 = kR 
1 1, l > lo ' 

which, in elastic scattering, leads to Fraunhofer 
diffraction from a black nucleus, one obtains the 
old results of [ l-Sl for the inelastic scattering. 

(1) 

In a recent paper, [ 71 one of us has proposed a 
new method for the description of elastic diffrac
tion scattering. In this method one is able to take 
account of the presence of a transition region in 
the S matrix near l = l0 as well as the Coulomb 
repulsion and the refraction of the incident wave 
in the nuclear matter. It was also shown[BJ that 
the comparison of this theory with experiments on 
the scattering of a particles on many nuclei bears 
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out the correctness of the basic assumptions of 
the theory. 

In the present paper we attempt a unified de
scription of elastic and inelastic scattering on the 
basis of the theories mentioned above. Such an ap
proach to inelastic scattering is of essential in
terest not only from the point of view of the in
elastic scattering problem itself but also from the 
point of view of the method of complex angular 
momenta. The application of this method to inelas
tic scattering makes the theory developed in [ 7 J 

much richer in content, since the S matrix param
eters introduced in [ 7J for the description of elas
tic scattering are used for the inelastic scattering 
as well. On the other hand, the inelastic scattering 
is a serious test of the basic premises of the 
method of complex angular momenta in the theory 
of diffraction scattering. 

2. INELASTIC SCATTERING CROSS SECTIONS 

We restrict our discussion to the inelastic scat
tering by nuclei with zero spin and excitations of 
the one-phonon type. In the above-mentioned paper 
of Austern and Blair, [ 6J it was shown that in this 
case the inelastic scattering amplitude can be 
written in the form 

i -- oo dS 
frM(tJ) = 2 C (I) }'2I + 1 [I:M] ~ }'2l + 1 -i- Y1-M (tl, 0), 

l=M 

(2) 

where I and M are the angular momentum and its 
projection for the excited state under considera
tion. The nuclear matrix element C(I) is given by 

(3) 

where cpi and cpf are the wave functions of the 
initial and final states of the nucleus, and the quan
tities s LM are dynamical variables of the nucleus 
which determine the nuclear surface according to 
the formula 

R(tJ, !Jl)=Ro+ ~ SLMYLM*(tJ, !Jl). (4) 
L,M 

We note that C(I) is independent of M for a target 
nucleus of zero spin. The coefficients [ I: M] are 
equal to 

[I:M] = (I -M) !!(I +M)!! , 1f I+ M 1s even l ir [(I- M)! (I+ M) !]''• . . 

0 , if I + M is odd. 

These coefficients can be written in the following 
form: [ SJ 

(5) 

( 4n )''• ' n ) [I:M] = i-M -~- YrM (- 0 
. 2I+1 ,2'. 

(6) 

From this we easily obtain a relation which we 
shall need in the following: 

M 

(7) 

The quantity Sz in (2) is the S matrix element for 
the l-th partial wave in the elastic scattering of a 
particle with the same initial energy. 

It should also be noted that (2) was obtained by 
A us tern and Blair[ 6J with neglect of the Coulomb 
phase shifts. However, the same result is ob-
tai ned if one assumes one is dealing with a poten
tial which differs from the Coulomb potential only 
at large distances, where it drops off faster than 
the Coulomb potential. This leads to different 
cross sections only at small scattering angles, 
which we do not consider for other reasons (the 
discussion of small angles necessitates the inclu
sion of many poles of the S matrix, which makes 
our method ineffective). Therefore, with this treat
ment of the Coulomb repulsion, the scattering am
plitude is again expressed by formula (2), where, 
however, Sz must be taken as the matrix element 
for elastic scattering with account of the Coulomb 
repulsion. 

The method of performing the summation in (2) 
is completely analogous to that of [ 7 J. The value 
of the sum in (2) is entirely determined by the con
tribution from the residues of the poles of the 
function dS z /dl . It is clear that the poles of this 
function coincide with the poles of S z with the 
only difference that they are now double. As in the 
case of elastic scattering, one can restrict oneself 
to the contribution from the pair of complex con
jugate poles closest to the real axis. Calculations 
similar to those of [ 7J lead immediately to the 
following expression for the cross section: 

<JrM(tJ) = 2(21 + 1) IC(J) [I: M] 12iai2l0tJ2 sin-1 t}e-2Btl 

X {b2 + cos2 [(Zo + 112}tt· + v + 1/zn(M + 1) ]}, (8) 

b=·sh(~8o), 8o=2~-1 Imc5(li), v=arga+n/4. 
(9)* 

Since u IM = 0 if I + M odd, one can replace M 
by I in the argument of the cosine in (8). Using 
also (7), we find for the summed cross section 

crr(tl) = ~· <JrM({}) = Art12(sin tJ)-1 e-~lltt {b2 
M 

+ cos2 [ ( Zo + 1 I 2) tJ + v + 1 I 2 n (I+ 1)]}, 

Ar = 2(21 + 1) iai 2 IC(J) l2lo. 

For comparison, we give the cross section for 
elastic scattering: [ 7 J 

*sh =sinh . 

(10) 

(11) 
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<rez('I'J>) = (8nlolal 2 /k2sin'I'J>)e-21111 

X {b2+ cos2 [ (lo + 1/z) tJ> + y]}. (12) 

Thus the inelastic scattering is described by 
the same parameters as the elastic scattering, ex
cept for the factor A1 which contains the nuclear 
matrix element. It follows hence that, with the 
parameters Z0, {3, e0, I a I , and arg a determined 
from the data on elastic scattering, we can uniquely 
determine the angular distribution of the inelas
tically scattered particles, and from the absolute 
values of the experimental inelastic scattering 
cross section we find the value of the nuclear 
matrix element. This means that formulas (10) 
and (12) allow one, in particular, to extract im
portant information on nuclear structure, since 
the nuclear matrix elements obtained in the man
ner described can be compared with the values 
found on the basis of different versions of nuclear 
models. 

An important result expressed by (10) and (12) 
is the fact that they contain the so-called Blair 
phase rule. [ 31 This rule, which is very well con
firmed by experiment, states that the oscillations 
of the inelastic scattering cross sections are in 
opposite phase with the oscillations of the elastic 
scattering cross section if the spin of the excited 
state I is even, and they are in phase in the oppo
site case. The phase of the cosine in (10) does in
deed contain an additional term as compared to 
the elastic scattering case, (1/2)(1 + 1)7T, which 
shifts the phase by 1T /2 when I is even and leaves 
it unchanged when I is odd. 

The phase rule was obtained by Blair on the 
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FIG. 1. Elastic and inelastic (with excitation of the 2+ 
level at 1.37 MeV) scattering cross section for a particles 
with energies a) 31.5 MeV,[' 0] and b) 42 MeV["] on Mg24 • 

very unreliable basis of Fraunhofer diffraction 
theory. In the paper by Shekhata and one of the 
authors[ 91 a more fundamental derivation of this 
rule was attempted. However, also these authors 
remained within the framework of Fraunhofer dif
fraction theory. The discussion of the present 
paper and the result obtained about the correctness 
of the Blair phase rule can evidently be regarded 
as a completely satisfactory justification of this 
rule. 

3. COMPARISON WITH EXPERIMENT AND 
DISCUSSION OF RESULTS 

Figures 1 to 5 show the results of the calcula
tion of the cross sections for the elastic and inelas-

FIG. 2. Elastic and inelastic (with excitation of the 2+ 
level at 1 MeV and the 3· level at 3. 5 MeV) scattering 
cross section for a particles of 41 MeV[12 • 13lon Ti41 • 

10 

10-4-

I0-5.__--1:-;;---L---':-,,....--'--~;--.L_--,J-
Jo• 70" t5o• '/J 

FIG. 3. Elastic and inelastic (with excitation of the 2+ 
level at 1.45 MeV and the 3· level at 43 MeV) scattering 
cross sections for a particles of 43 Mev[••] on Ni51• 
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Table I ·. 

FIG. 4. Elastic scattering cross sections for a particles 
of 43 MeV['5 ] on Zn64 and inelastic scattering cross sections 
for the excitation of the 2+ level at 1.04 MeV and the 3-
level at 2. 8 MeV for a particles .of 43 Mev[••] on zn••. 
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FIG. S. Elastic and inelastic (with excitation of the 2+ 
level at 1.8 MeV and the 3- level at 2. 8 MeV) scattering 
cross sections for a particles of 41 MeV on Sr''.[12] The 
experimental data have been taken with a natural mixture 
of isotopes. 

tic scattering of a particles on five different nu
clei according to formulas ( 10) and ( 12), and the 
corresponding experimental data. 

The experimental data [ 10 - 16 J on the elastic 
scattering and the excitation of the 2+ and s
levels are in all figures indicated by triangles, 
circles, and squares, respectively. The parameter 
values used are given in Table I. The comparison 
shows that a single set of parameters fits satis
factorily the elastic as well as the inelastic scat
tering of a particles on nuclei. An appreciable 

Nucleus I E~ I R I ~ llal I argal 9, 

Mg24 31.5 6.46 2.61 1.14 0 
Mg2• 42 6.21 2.65 1.16 0.6 
Ti•s 41 6.97 2.56 0,92 0.7 
Nj68 43 7.03 2.80 1.13 1.0 
Zn64 43 7,64 4.60 3.48 0 
znee 43 7.64 4.60 3.48 0,3 
Sr88 41 7.93 3.20 1.48 1,0 

Table II 

Level 
Nu- E~ I I~ cleus 

E 
I C(I) I ~I 

Mo24 31.5 1.37 2+ 0.66 0.331 Mg2• 42 1.37 2+ 0.63 0.34 
Ti48 41 U.s 2+ 0.35 0.16 

3- 0.15 0.08 
Ni58 43 {1.45 2+ 0.36 0.16 

4.45 3- 0.23 0.12 
znss 43 {1.04 2+ 0,31 0.12 

2.8 3- 0.20 0.09 
Srss 41 {1.8 2+ 0.18 0.07 

2,8 3- 0.16 0,07 
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discrepancy between theory and experiment occurs 
only in the case of Ni58 for angles J ~ 100 °. It is 
very probable that it is no longer permissible to 
restrict oneself to only one pair of poles in the 
analysis of the scattering into such large angles. 

In Table II we give the values of the nuclear 
matrix element C(I) in units of 10-13 em. There 
we also include the values of the parameters {31 
obtained from C(I) by 

(13) 

where RN is the actual nuclear radius defined by 
RN=R-Ra, (14) 

for Ra, the radius of the a particle, the value of 
2.0 F was chosen. [ 12 J In the last column the values 
of f3j are listed. These are obtained from the f3I 
given by McDaniels et al. [ 12 J by multiplication 
with Ro/(Ro - Ra), where R0 is taken from the 
same reference. It is clear that in this way ac
count is taken of the difference between R0 and 
RN, the actual nuclear radius. 

We see that our values of f3I, the nuclear de
formation parameters, are in general agreement 
with those obtained in [ 12 J on the basis of the old 
theory of inelastic diffraction scattering, although 
there are in some cases noticeable discrepancies 
(by a factor of 1.5 to 2). Such an agreement should 
have been expected from the comparison of for
mulas (10) and (12) with the corresponding for
mulas of the old diffraction theory. Indeed, let us 
consider the case of odd spin I. Then we have 
from (10) and (12) 
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O'I('I't) = (4rc)-1 (kRNtJ~r)2·crez('l't). (15) 

This relation between the elastic and inelastic 
scattering cross sections also holds in the usual 
diffraction theory[ 31 for odd I, though only in the 
asymptotic region kRJ » 1. 

The situation is analogous for even I. Here 

O'r ( tl-) = ( 4rt) -I (kRNtl-~r )2 exp(rt~ I lo) O'ez(tl- + n I 2Z0). ( 16) 

Almost the same relation has also been derived 
for the asymptotic region in the usual diffraction 
theory. The only difference is that in the usual 
theory there is no factor exp(7r{3/Z0). This must 
lead to a reduction of f3I by the factor 
exp(-7r{3/2Zo) as compared with the usual theory. 
As a ru1e the quantity 1r{3 /2Z0 is much less than 
unity, so that the effect of this factor is small, 
although it may somewhat alter the magnitude of 

f3I· 
In conclusion the authors express their deep 

gratitude to N. Austern and J. Blair for sending a 
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