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Experiments are discussed on measuring nucleon polarization produced as a result of the 
scattering of a polarized beam by a polarized proton target. In such experiments it becomes 
possible for the first time to determine the components of the third rank polarization tensor 
Mikq· The correlation of polarizations is discussed also in the case when one of the initial 
particles is polarized. Relativistic formulas for the quantities being measured are obtained. 
The problem of reconstructing the scattering matrix is discussed. 

1. INTRODUCTION 

THE use of polarized proton targets considerably 
extends the possibilities of investigations in the 
physics of elementary particles. In experiments 
utilizing a polarized target the parities of particles 
and of resonances can be uniquely determined [1- 6], 

the parameters R and A of meson-nucleon scat­
tering can be measured [T ' 1], the angular interval 
for the measurement of polarization can be appre­
ciably extended [B, 1] etc. 

The use of polarized targets essentially sim­
plifies the measurements of the polarization char­
acteristics of nucleon-nucleon scattering. Meas­
urement of the scattering cross section for nu­
cleons on a polarized proton target enables us to 
determine the polarization of the recoil protons. 
The tensor Cik describing the correlation of 
polarizations can be obtained from the cross 
section for the scattering of a polarized beam by 
a polarized target. A measurement of nucleon 
polarization in the scattering of an unpolarized 
beam by a polarized target enables us to deter­
mine the depolarization tensor Dik and the polari­
zation transfer tensor Kik· Here we shall discuss 
possible experiments on the measurement of nu­
cleon polarization arising as a result of the 
scattering of a polarized beam by a polarized 
target. In these experiments it becomes possible 
for the first time to determine the components of 
the third rank polarization tensor Mikq· Measure­
ment of such complicated polarization character­
istics will help to remove the remaining ambigui­
ties of phase analysis. These measurements will 
be particularly important in that energy region 
where the cross sections for inelastic processes 
are comparable to the cross section for elastic 

scattering. In order to carry out a phase analysis 
in this region it is necessary to utilize the results 
of the phenomenological analysis of inelastic 
processes. Moreover, in the high energy domain 
there is a considerable increase in the number of 
states the interaction in which must be taken into 
account. As is well known, the amplitude for 
elastic scattering can also be determined directly 
from the experimental data on elastic scattering 
without making use of information from inelastic 
processes [S]. However, this method requires a 
large number of polarization measurements. 

2. THIRD RANK POLARIZATION TENSOR 

We consider the polarization of the final parti­
cle arising as the result of the scattering of a 
polarized beam by a polarized target. The sub­
script 1 in the spin matrices will refer to the in­
cident and the scattered particles, and the sub­
script 2 to the target particles and the recoil 
particles. In the case of identical particles we 
shall define the scattered particle to be the one 
emerging into the angular integral 0 s (} :::; 1T /2 in 
the c.m.s. 

In the rest system obtained by a Lorentz 
transformation from the c .m .s. the polarization of 
the scattered particle is equal to 

Pu'= Spcr1iM1/2(1+(atPt}) 1/2(1+(a2P2))M+ (1) 

SpM1/2(1 +(atPt)) 1/2(1 +(a2P2))M+ ' 
where P 1 and P 2 are the polarizations of the 
initial particles in the corresponding rest systems, 
while M is the scattering matrix in the c.m.s. 

As is well known, the nucleon-nucleon scatter­
ing matrix M ( k', k) is characterized by five com­
plex functions of the angle and the energy and has 
the following general form [s, 10]: 
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M(k', k) = (u + v) + (u- v) (a1n) (a2n) + c[ (a1n) 

+ (a2n)] + (g- h) (a,m) (a2m) + (g +h) (a11) (a2l). 

(2) 

Here k and k' are unit vectors in the directions 
of the initial and final momenta in the c.m.s., 
while l, m, and n form an orthonormal triad of 
vectors: 

k'+k 
I= jk'+kl' 

k'-k 
m= jk'-kl, 

[kk1 
n=[lm]= j[kk']l 

(3)* 

The matrix (2) satisfies the requirements of 
invariance under rotations, reflections and time 
reversal, and is also symmetric with respect to 
the simultaneous interchange of initial and final 
spin indices. The latter condition is a consequence 
of identity in the case of pp scattering, while 
for up-scattering it is only true within the frame­
work of isotopic in variance. 

As can be seen from expression (1), the polar­
ization P 1i' is determined by the following ten-
sors: 

1 1 
P;0 = -- Sp U!i MM+ = -- Sp <12i MM+ 

4ao 4cro 

= - 1-SpMa1;M+ = - 1-SpMa2iM+ =A;, 
4cro 4cro 

(4) 

(5) 

(6) 

(7) 

(8) 

In these formulas a0 is the differential cross 
section for the scattering of an unpolarized beam 
by an unpolarized target in the c.m.s., while P~ 
is the polarization occurring in the scattering of 
unpolarized nucleons. In virtue of the principles 
of invariance the polarization Pf coincides with 
the asymmetry Ai arising in the scattering of a 
polarized beam by an unpolarized target (or of an 
unpolarized beam by a polarized target)[9•10]. 

The depolarization tensor Dik and the polari­
zation transfer tensor Kik can be determined from 
experiments on the measurement of polarization 
in the case when either the incident beam or the 
target is polarized. By studying the cross section 

*(kk 1);; k X k '. 

for the scattering of a polarized beam by a 
polarized target it is possible to determine the 
components of the tensor Pik· We note that the 
tensor Pik is related to the tensor describing the 
correlation of polarizations 

C;11. = (4cro)-1 Sp a1ia211.MM+ 

by the relation [1•8] 

P;11.(k', k) = C;11.(-k, -k'), (9) 

which follows from the invariance with respect to 
time reversal. Relation (9) means that the com­
ponents of the tensor Pik can be determined also 
from experiments on the measurement of the 
correlation of nucleon polarization arising in the 
scattering of unpolarized particles. 

A new quantity measured in the experiments 
under consideration is the third rank pseudo­
tensor Mikq. We investigate the structure of this 
tensor. From considerations of invariance with 
respect to rotations and reflections we obtain 

M;kq = Munl;ll{nq + Mtmnl;mknq + Mznzl;nklq 

+ Mznml;nkmq + M mznmilknq + M mmnm;mknq 

+ Mmnmm;nkmq + Mmnlminklq 

+ Mnmlnimklq + Mnmmnimkmq + Mnzmn;lkmq 

+ Mnnn;lklq + Mnnnn;nknq. 

Not all the components of this tensor are inde­
pendent. In order to verify this we utilize the 
relation [1•6] 

M(k', k) = (a,n) (0'2D)M(k', k) (a1n) (a2n), 

(10) 

(11) 

which follows from the requirements of invariance 
with respect to reflections in the scattering plane. 
We show first of all that the component Mnnn 
coincides with the polarization P 0 = ( P 0n) which 
arises in the scattering of unpolarized particles. 
Indeed, we have 

1 
Mnnn = - 4 Sp(O'tn)M(O'tD) (a2n)M+ 

<Jo 

1 
= --Sp(a2n)MM+ = P0• 

4cro 
(12) 

Further, utilizing (11) and the symmetry require­
ments we obtain 

Jltlnmm = -Mnu, Mmnm=Mznl, Mmmn = Mun. (13) 

Thus, the tensor Mikq is characterized by nine 
components. In subsequent discussion we shall use 
half the sums and half the differences of compon­
ents with different indices: 

M:tim = 1/2(Mnlm ± Mnml), llfz:m = 1/2(Mznm + Mmnl), 

(14) 
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We present the expressions for the components 
of the tensor Mikq and for the cross section a0 

calculated with the aid of the matrix (2): 

a0Jl!Inu = 4 Re c*h, ao#Immn = 4 Re c*v, 

aoMmnm = 4 Re c*g, aoMnnn = aoP0 = 4 Re c*u, 

aoM~zm = 4 Im uh •, aoM;;zm = 4 Im gv*, 

aoMz;;m = 4 Im ug*, 

aoMz~n = 4 Im kg*, aoMz-;;.n = 4 Im uv*, 

(15) 

It can be shown that there exist algebraic rela­
tions between these quantities. In order to do this 
we utilize the identity 

x Im yz* + y Im zx* + z Im xy* = 0, (16) 

which is valid for any three complex numbers 
x, y, z. As a result of the invariance of observable 
quantities with respect to multiplication of the 
scattering matrix by a phase factor, the amplitude 
c in the expansion (2) can be assumed to be real. 
The remaining four complex functions u, v, g and 
h satisfy the relations 

u Im gh* + g Im hu* +hIm ug* = 0, 
(17) 

vIm gh* + g Im hv* + hIm vg* = 0. 

From here with the aid of expressions (15) we 
obtain three relations between the components of 
the tensor under consideration: 

(18) 

It is evident that relations (18) enable us to ex­
press three components in terms of the remaining 
ones. 

In addition to the tensor Mikq we can construct 
the following three third rank polarization ten­
sors [1] • 

(19) 

(20) 

(21) 

The tensor Nikq appears in the expression for 
the polarization of the recoil particle in the case 
when the beam and the target are polarized, while 
Cikq ( Pikq) appears in the expression for the 
correlation of polarizations in the case of the 

scattering of a polarized beam by an unpolarized 
target (or of an unpolarized beam by a polarized 
target). From invariance with respect to time 
reversal and a 1 ~ a 2 symmetry it can be easily 
seen that 

N;hq (k', k) =M;qh (k', k), (22) 

Ciltq(k', k) = Ph;q(k', k) = -Mq;h(-k, -k'). (23) 

Thus, the components of the tensor Mikq also 
define all the other third rank tensors. 

As is well known, the measurement of nucleon 
polarization in the energy range from 20 to 
100 MeV is difficult because no target analyzers 
with sufficient analyzing power are available. 
Relations (22) and (23) can be utilized to determine 
the components of Mikq over the whole angular 
interval. For example, in scattering through 
large angles it can turn out that a measurement 
of Nikq• i.e., of the polarization of recoil parti­
cles, is simpler than the measurement of Mikq· 

In concluding this section we make two re­
marks. The first refers to proton -proton scatter­
ing. As a result of the Pauli exclusion principle, 
the tensor Mikq satisfies in this case the relation 

M;hq (k', k) = M;qh ( -k', k). 

From this we obtain for the components of the 
tensor 

(24) 

Mmnz(:rt- 8) = -Mzmn(8), Mmzn(:rt- fl) = -Mznm(8), 

Mmnm(:rt- 8) = -Mmmn(8), Mnu(:rt- 8) = Mnu(8), 

Mnmz(:rt- 8) = -Mnmz(8), Mnzm(:rt- 8) = -Mnzm(8), 

(24') 

where B is the scattering angle in the c.m.s. Thus, 
in the case of identical particles it is sufficient to 
measure the polarization in the range 
0 :::::: e :::::: rr/2 for all possible orientations of the 
polarizations of the initial particles. 

The second remark refers to the low energy 
domain, where it is sufficient to take into account 
the interaction only in the S-state. The scattering 
amplitude in this case has the form 

(25) 

where the coefficients a and {3 are related to the 
scattering amplitudes in the 3Sc and the 1S0-

states bT and bs by the following relations: 

a= 1/4(3bT + bs), 

The tensor Mikq is equal to 

M;hq = Jl1nzm:Eihq, 

aoMnzm--:- 21m a*p. 

(26) 

(27) 

(28) 
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In the case of pp-scattering a = -{3 and Mikq = 0. 
Restricting ourselves to the main term in the ex­
pansion with respect to the momentum p we 
obtain for the scattering of neutrons by protons 

Here as and aT are the singlet and the triplet 
scattering lengths. 

3. MEASURED QUANTITIES 

(29) 

For the determination of quantities measured 
experimentally we introduce in the laboratory 
system two orthonormal vector triads 

kz', nz = (kzkz'] I I (kzkz'] I. s z' = [ n tk z'] ; ( 30) 

kz, nz. sz = (nzkz], (31) 

where kz ( kz ) is the unit vector in the direction of 
the momentum of the scattered (incident) nu-
cleon. It is obvious kz = k, nz = n. The polariza­
tion of the scattered particles can be naturally 
characterized by its components in the system (30), 
while the initial polarizations can be naturally 
characterized by the components in the system 
(31). However, we should keep in mind that in the 
relativistic domain in comparing the results of 
the calculation of the average values of the spin 
operators with the results of polarization meas­
urements in addition to the usual kinematic cor­
rections it is necessary to take into account the 
characteristic relativistic rotation [u-1(]. The 
component of the polarization vector of the 
scattered particle along the direction az meas­
ured in the l.s. taking this effect into account is 
equal to 

((a1>zaz} = cr-1 Sp (at(az)n)M1/z(1+ (cr1P1)) 

X 1/2(1 + (o2P2))M+, 

a= SpM1/2(1 + (cr1P1)) 1/2(1 + (azPz))M+. (32) 

Here a is the differential scattering cross sec­
tion, while 

(a 1)R = Rn (Q1)az. 

In (33) Rn ( n1 ) is the operator for a rotation 
about the normal n through an angle n 1 = (} 
- 2BZ (8Z is the scattering angle in the l.s.). 

(33) 

Utilizing considerations of invariance we ob­
tain from (32) the following expressions for the 
components of the polarization of the scattered 
particle: 

cr(<a1> 1nz) = cro(P0 + Dnn(P1nz) + Knn(Pznz) 
+ po(Ptnz) (P2nz} + Mn,,(Ptkz) (Pzkz) 
+ Mn1<s(P1kd (P2sz) + Mnsi<(Ptsz} (Pzkz) 

+ Mnss(Ptsz) (P2sz) ], (34) 

::r( <at> zk z') = crojD,,,(P1kt) + D,,.(Pts z) + K,,,(Pzkz) 

+ K,,,(P2s1) + M,.,n(Ptkz) (Pznz) 

+ Mk'sn (Pts z) (Pznz) + Ml<'ni<(Ptnz) (Pzkz) 

a ( (01) zsz') = cro [Ds'h (Ptkz) + Ds•s(Pts t) + Ks'h (Pzk 1) 

(35) 

+ K ••• (Pzsz) + Ms'hn(P1kl) (P2n z) + Ms'sn (P1s z) (Pznz) 

+Ms'nh(P1nz) (Pzkl)+Ms'ns(P1nl) (Pzsz)]. (36) 

Here we have utilized the following notation: 

Dab= (al)R;D;h(bz)h, Kab = (a!)RiKih(bz)h, 

Mabc = (az)R;M;hq(bz)h(cl)q. (37) 

We note that the well known Wolfenstein parame­
ters for triple scattering [15] determined taking the 
relativistic rotation into account are given in the 
present notation by 

D = Dnn, R = D ••• , A = D"'"• 
(38) 

The differential cross sections for the scattering 
of a polarized beam by a polarized target can be 
written in the form 

a= cro[1 + po(P1nz) + P 0 (P2nz) + Pnn(P1nl:) {Pznz) 

+Phi< (P1k t} {Pzkz) +Phs (P1kz) (Pzsz) 
+ P~ts(P1s 1 ) (P2kz) + P •• (P1s1) (Pzsz)J, 

Pab = (az};P;~t(ht)lt. (39) 

As can be seen from the formulas given above the 
nucleon polarization arising in the collision of a 
polarized beam with a polarized proton target is 
characterized in addition to the quantities deter­
mined in simpler polarization experiments also 
by the twelve quantities Mabc· These quantities 
are related by linear expressions to the nine com­
ponents of the tensor Mikq and it is therefore ob­
vious that between them there must be three rela­
tions. Indeed, it can be shown that 

Ms'sn- Mlt'ltn 
M nl<lt = - M nss, M + M = tg 8 l, 

s'kn k'sn 

(40)* 

Below we give formulas relating the measured 
parameters Mabc to the components of the tensor 
Mikq: 

Ill nkk = M nll cos a- M~lm sin a, 
Ill nks = M nll sin a + M~lm cos a + M;;zm• 

M nsk = M nll sin a + M~zm cos a- M;;lm• 

*tg =tan. 
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M k'kn = M mmn cos ( ~ + ex) - Mimn sin ( { -ex) 
- M!mn sin ( { + ex), 

Mk'sn = Mmmnsin (~+ex)+ Mimn COS ( 1-ex) 
+ M;;,.n COS (-;. + ex), 

Mk'nk = Mmnm cos ( {+ex)- Minm sin (}-ex) 
- M!nm sin ( { + :x ), 

M k'ns = M mnm sin ( { +ex) + Minm cos (}-:X) 

+ Mlnm COS (-;. + ex), 
M s'kn = - M mmn sin (} +ex) + Mimn cos (}-ex) 

- M!mn COS ( 1 +ex), 

M s'sn = M mmn cos (}+ex) + Mimn sin (~-ex) 

- M;;_n sin (} + ex), 

M s'nk = - M mnm sin ( -~ +ex) + Minm COS (~-ex) 

-M!nm cos (~+ex), 

LR _ p P! (R + Ms'snP2) 
es' - a 1 + pop2 ' (44) 

where P a is the analyzing power of the target­
analyzer. If the parameters R and P 0 are known, 
then from (44) one can obtain Ms'sn· The remain­
ing quantities Mabc can be found in an analogous 
manner. 

The components of the tensor Mikq can also be 
determined by means of measuring the polariza­
tion of the recoil particle arising in the scattering 
of a polarized beam by a polarized target. Ex­
perimentally one measures the components of the 
polarization vector of the recoil particle in the 
system associated with the momentum of there­
coil particle in the l.s.: 

Dt, k{', St" = (ntkz'']. (45) 

Here k[' is the unit vector in the direction of the 
momentum of the recoil particle. Taking the rela­
tivistic rotation into account we obtain in analogy 
with (34)-(36) that from the measurements of the 
polarization of the recoil particle the following 
quantities can be determined: 

Nnbc = (n!)iNikq(bt}k(ct)q, 

Nk"bc = (k l ") RiNikq (b l )k ( C t) q, M s'ns = M mnm cos ( { +ex) + Minm sin ( ~ -ex) 

- M!nm sin ( { +ex). ( 41) Ns"bc = (s.t") RiNikq (bt )k (c t) q· (46) 

The angle a is defined in the following manner: 

a= 8/2-St. (42) 

It is obvious that in order to obtain nonrelativistic 
relations one must set a == 0. In order to measure 
the transverse components ( < (]' tl) nz ) and 
( (a1z )sz') of the polarization it is necessary to 
choose the plane for the analyzing scattering to be 
orthogonal with respect to nz and Sl'· The longi­
tudinal component ( (a1z)kz,) of the polarization 
can be measured if the nucleons prior to the ana­
lyzing scattering are made to go through a mag­
netic field directed along nz. 

For example, in order to determine the param­
eter Ms 'sn it is necessary to scatter the beam 
with polarization P 1 == P 1sz on a target polarized 
orthogonally to the scattering plane ( P 2 == P 2nz ) . 
It follows from (34)-(36) and (39) that the polari­
zation arising as a result of this is equal to 

(at> t = [kt' (Dk'sPt + Mk'snP1P2) + s t' (Ds•.Pt 

+ Ms'snP!P2) + Dt (KnnP2 + P0)] I (1 + P 0P2). (43) 

From this it follows that if the normal to the plane 
of the analyzing scattering is parallel to sz', then 
the left-right asymmetry is equal to 

Here bz and cz are vectors from the triad nt, 
kZ, sz, while ( k[')R and ( s[')R are equal to 

where Rn ( Q 2 ) is the operator for the rotation 
about the normal n by an angle 

(47) 

(48) 

In this relation ~Z is the recoil angle in the l.s., 
while <I> is the recoil angle in the c.m.s. Formu­
las for relating the quantities (46) determined 
experimentally with the components of Mikq can 
be found with the aid of formula (41). It can be 
easily shown that 

Nnbc = Mncb, Nk"bc = -Ms'cb (a--+-a'), 

Ns"bc=Mk'cb (a--+-a'), (49) 

where (a- -a') means that in the correspond­
ing expressions in (41) the angle a must be re­
placed by the angle -a', with 

a' = 11> I 2 - <1> t· (50) 

In the non-relativistic limit a' == 0. 
The components of the tensor under consider­

ation can also be determined from measurements 
of the correlation of polarizations arising as a 
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result of the scattering of a polarized beam by an 
unpolarized target. 

Below we reproduce expressions for the meas­
ured quantities 1 >: 

Cnk"k = Mmnmsin (f-a')+ Minm cos ( f +a') 

+ Minm cos (f-a'), 

Cnk"s =- Mmnmcos ( {-a')+ Mjnm sin ( f+a') 

+ Minm sin ( f - a'). 

( e ·) M+ . ( e ') cns"k=Mmnmcos T-a + lnmsm z+a 

- Minm sin ({-a'), 

Cns"s = Mmnm sin (~-a·)- Minm cos ( t +a') 

+ Minm cos ( f -a'), 

C k'k"n = M nll sin (a - a') + M~lm cos ( !l - a') + M;;lm cos (a + a'), 

C k's"n = M nll cos (a- a') - M;t;1m sin (a- a') + M;;1m sin (a + a'), 

Cs'k"n = Mnll cos (a- a')- M;t;1m sin (a- a')- M~m sin (a+ a'), 

Cs's"n =- M 7111 sin (a- a')- M~lm cos (a- a')+ M;;1m cos (a+ a'), 

C~'nk = Mmmn cos (-}+a)+ Mimn sin (} -a) 

Ck'ns = Mmmn sin ( f +a)- Mjmn cos ({-a) 

+ Mimn COS ( { +a), 

Cs'nk =- Mmmn sin({+ a)- Mjmn cos (~-a) 
- Mj;.... cos ( {+a), 

(51) 

The notation is obvious: 

Ck's"n = (k !') Ri (S t") Rh Cil<q (n l) q 

etc. From equations (13) it follows that the follow­
ing relations hold: 

Cn•"h + Cnh"s 

Cnh"h- Cns"s 

l)The formula for Cs 's "n taking relativistic rotations into 
account was obtained earlier by V. I. Nikanorov. 

ch'nh- c..... ( e) -,..------ = tg a-- . 
Cs'nh + Ch'ns 2 

(52) 

Finally, information about the components of Mikq 
can also be obtained in measuring the correlation 
of polarizations in the case when the target is 
polarized. The quantities measured in this case 
can be found from expressions (51) in the follow­
ing manner: 

Ph.'k"n =- Cs's"n (a~- a'), Ps'h''n = Cs'k"n(a ~-a'), 

Ph's"n = Ch's"n (a :;:t::- a'), Ps'nb =- Cnh"b (a'-- a), 

Ph'nb = Cns"b (a'-- a), Pns"b = Ch'nb (a-- a'), 

Ps's"n = - Ch'h"n (a :;:t::- a'), 

Pnh"b =- Cs'nb (a-- a'). (53) 

The required replacement of angles is shown 
in brackets. 

In conclusion, we consider the problem of the 
direct reconstruction of the amplitude for nucleon­
nucleon scattering. As Schumacher and Bethe 
have shown[8J, for the reconstruction of the am­
plitude it is sufficient to measure the cross sec­
tion, the polarization, the depolarization tensor 
Dik• and also certain components of Cik and Kik 
(a total of eleven quantities). In doing this the 
corresponding quantities must be measured with 
a high degree of accuracy. utilizing relations (15) 
and Table II from the review article [1], we ob­
tain2l 

O'o 
Reh= 4cMnlZ. 

O'o 
Imh=-Cmlt 

4c 

O'o 
Reu =-po. 

4c 
(54) 

The amplitude c is taken to be real and positive. 
It is related to the observed quantities by relation 
(7.46) from m. With the aid of (54) other expres­
sions for c can be obtained: 

2 2 
c2 = cro (Mmmn + Dmz) 

2{1 + Dnn- Knn- Cnn) 
2 2 

O'o(Mmnm + Kml) 

2 2 
O'o(Mnu + Cml) (55) -

2(1-Dnn- Knn + Cnn) 

2>In Table II of the review article[1] there are some mis­
prints. In formulas (5) and (8) of this table one should replace 
z~m. The same replacement should also be made in (7.43), 
(7. 44) and (7 .SO '). 
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The angular dependence of the parameter Ms 'sn for 
np-scattering at an energy of 630 MeV. The graphs 1-3 
have been calculated with the aid of sets of phases from[17]. 

The errors shown are due to the errors in the determination 
of the elements of the scattering matrix in the course of the 
phase analysis. 

Relations (54) and (55) show to what extent the 
procedure for reconstructing the scattering am­
plitude is simplified if the tensor Mikq is known. 

The measured parameters Mabc are calcu­
lated in [16] with the aid of the available sets of 
phases over a wide range of energies. The dia­
gram shows results of the calculations of the 
component Ms 'sn for up-scattering at an energy 
of 630 MeV. It can be seen from the graphs that 
a measurement of this quantity would enable us 
to significantly reduce the ambiguity of the phase 
analysis. 

We are grateful to F. Legar and Z. Yanout who 
at our request have calculated the graphs shown 
in the diagram, and also to Yu. M. Kazarinov and 
Ya. A. Smorodinski'i' for useful discussions of the 
problems discussed here. 
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