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It is shown, within the framework of the axiomatic formulation of quantum field theory, [t, 21 

that when the values of some invariants are fixed, the indefinite quasilocal terms can be ex­
pressed in terms of R-functions. The invariant properties of the retarded matrix elements 
or v-functions are effectively used in this case. It is shown that on the mass shell the v­
functions in the physical region of variation of the 4-momenta depend only on the invariant 
scalar products of the 4-vectors. The procedure for excluding the quasilocal terms yields 
explicit equations for an arbitrary matrix element (n-point diagram) in integra-differential 
and difference forms. The equations contain a finite number of arbitrary parameters, bound­
ary values, or charges, equal to the number of amplitudes which do not vanish at infinity. 

1. INTRODUCTION 

A system of integra-differential equations was ob­
tained earlier, [i, 21 1> within the framework of the 
axiomatic method in quantum field theory, for the 
S-matrix elements extrapolated off the mass shell 
only with respect to one of the external four­
momenta. Such a system of equations follows from 
a somewhat modified (compared with the usual one) 
formulation of the fundamental axioms of the 
theory. One of these axioms is chosen to be the 
condition for minimal singularity of the commuta­
tor of the field and current operators at identical 
times. Microcausality, the existence of a unitary 
S matrix, and renormalizability of the theory are 
consequences of the initial axioms. The equations 
do not contain diverging expressions and, in the 
case of the iterational solutions, give the renor­
malized series of perturbation theory. 

The main differences from other formulations 
of axiomatic equations in quantum field theory are 
as follows. First, the undetermined subtractional 
(or quasilocal) terms are eliminated from the 
equations by using the covariant properties of the 
matrix elements. 2> Second, the number of arbitrary 
constants ("charges") which enter in the solution 
is limited, and is exactly equal to the number of 
amplitudes that do not vanish at an infinitely re­
mote point in the momentum space of the invariant 

1 )These papers are cited henceforth as I. 
2)This is the most essential deviation from the formulation 

adopted in [3], where the departure off the mass shell is also 
carried out in accordance with one of the external four-momenta. 

variables. It must be emphasized, that in the for­
mulations of Lehmann, Simanzyk, and Zimmer­
man[4l and of Bogolyubov, Medvedev, and Poliva­
nov[3l the solution of the corresponding axiomatic 
equations was determined in each order of pertur­
bation theory accurate to a finite number of con­
stants, that is, the exact solution for the nonrenor­
malizable theories contains, generally speaking, 
an infinite number of arbitrary parameters. Third, 
finite solutions of the equations correspond only to 
renormalizable variants of the theory (from the 
point of view of the Lagrangian formulation). 

The equations of I were derived explicitly in 
integra-differential form only for the simplest 
matrix elements (including the six-point diagram). 
The advantages of the integra-differential form of 
notation become manifest, in particular, when 
solving equations by perturbation theory, when the 
supplementary conditions are automatically satis­
fied, and the region in which the invariants are 
specified (modified) is not limited-it is possible 
to integrate along any path in a space of real val­
ues of the invariant variables. On going beyond 
the framework of perturbation theory, the integra­
differential notation in all probability loses some 
of its attractive features, and the supplementary 
conditions turn into too rigid and cumbersome ob­
stacles when attempts are made to obtain approxi­
mate equations. This raises the important ques­
tion of eliminating the quasilocal terms in the in­
tegral or differential formulation of the equations. 3> 

3 )Such equations were investigated earlier by one of the 
authors [3]. 

1102 



QUANTUM FIELD THEORY EQUATIONS IN AXIOMATIC APPROACH. II. 1103 

The purpose of the present paper is to investi­
gate the invariant properties of the matrix ele­
ments contained in the equations and to obtain in 
explicit form equations for ann-point diagram in 
differential (or integral) form with the quasilocal 
terms eliminated. In Sec. 2 we investigate ques­
tions involving the invariant variables on which the 
v-functions on the mass shell depend, the region 
of variation of these variables in the equations, 
and a convenient choice of independent invariance 
in the case of an arbitrary n-point diagram. In 
Sec. 3, to explain the gist of the method, we first 
derive difference equations for three-, four-, and 
five-point diagrams. We show the distinguishing 
features of the boundary conditions at the thresh­
old and at an infinitely remote point. The method 
is then generalized to six-point and n-point dia­
grams. In Sec. 4 we discuss briefly the obtained 
equations and the prospects for their solution out­
side the framework of perturbation theory. The 
equations for the n -point diagram are written out 
in the Appendix. 

In the following paper (Ill) we shall present 
material pertaining to the nonrelativistic limit of 
the axiomatic equations and its connection with the 
Schrodinger equation. 

Work is now under way towards completing the 
derivation of analogous equations with participa­
tion of spinor particles. [ 61 

2. INVARIANT VARIABLES 

1. We define an arbitrary v-function by the re­
lation 

m 

v(p!, ... , Pm) = (2n)-Sm/2 ~ exp ( i ~ p;X;) d4x1 ... d4xm 
i=l 

The notation here is the same as in I. For the 
sake of generality we assume all the particle 
masses to be different. 

(2.1) 

The microcausality condition means that the in­
tegrand in (2.1) vanishes when x~ < 0 or Xio > 0 
for any 1 :;:; i :;:; m. Consequently, the function 
v(p11 ••• , Pm) is a complete analog in p-space of 
the Wightman function 

Wm+i(£1, ... , £m) = <OJ<p(xi) ... <p(Xm+i) JO), 

£i = Xj- Xj+!, 1 ~ j ~ m + 1. 

The function v(p1, ••. , Pm) admits of a unique an­
alytic continuation in the tubular region 

Pi~ q; = Pi - if];, f]i2 > 0, fjiO > 0, 

- oo < p; < + oo, i = 1, ... , m. (2.2) 

From the Hall-Wightman theorem [7l it follows 
that v(qlt ... , qm) is a function of only the scalar 
products qiqj 

u(q~, ... , qm) = u( {q;qi}) · (2.3) 

The region of holomorphism of v({ qiqj}) is the re­
gion of variation of the scalar products, when the 
vectors q1, ••. , qm vary in the tubular region (2.2). 

The arbitrary v function (2.1) can be defined 
on the mass shell as follows: 

=lim u(q~, ... , qm), 

j = k+ 1, ... , m. 
(2.4) 

Thus, all the v-functions (2. 4) on the mass shell 
are different boundary values of a single analytic 
function v(q1, ••. , qm)· 

We shall show that, owing to the quadratic 
properties of (2.3), the v-function on the mass 
shell depends only on mi and on the scalar prod­
ucts PiPj, and does not depend on the sign of the 
different combinations of the type Ei ± Ej. We go 
in the limit to real values in the analyticity region 
of (2. 2), putting 

q; = p; - if];, fl; = ep;, p;o = + fp;2 + m;2 , 

i = 1, ... ' k; 

j = k + 1, ... , m; e ~ +O. 

Then, recognizing PiPi' > 0 and PjPj, > 0, we ob­
tain 

lim q;q;, = p;p;-{1- ie) 2 = p;p;,- iO, i ~ i' = 1, ... , k; 
e--.-+0 

lim qiqi' = PiPi'(1 + ie) 2 = PiPi' + iO, 
E-++0 

j ~ j' = k + 1 , ... , m; 

!~~0 q;qi =- p;pi(1 + ie) (1- ie) =- PiPi, i =I= j. (2_5) 

Consequently, the v-function on the mass shell 
depends only on the scalar products PiPi', PjPj', 
and PiPj, is regular at the point -PiPj, and is a 
generalized function of PiPi', and PjPj'. 

Let us explain this result using as an example 
the four-point diagram: 
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ms2 - iO, P1P2- iO, P1Pa- iO, PzPs- iO). (2.6) 

So long as we are not interested in the analytic 
properties of v-functions, we can simply write 

v(PIP2P31) = v+(PIP2, P2Ps, PIPs) = v+(s, u, t), 

v(PIPziPs) = V-(PIP2, P2Pa, P1Pa) = v_(s, u, t), 

s = PIP2, u = P2P3, t = PIP3, 

that is, we can assume that they depend only on 
the invariant scalar products s, u, and t. 

2. Let us find the region of the independent 
variation of the invariants for real values of the 
momenta. It is easy to show that any three 4-
momenta Pi> P2, and p3 are connected by the 
inequality 

P2P3 u 
1]=--=--, 

m2m3 m2m3 (2. 7) 

~- PIP3 - t 
- m1m3 - m1m3 · 

For equal masses (m1 = m2 = m3 = m) we have 
2 sut 

s2 + u2 + tz- -2- - m" ~ 0. 
m 

(2. 7') 

3. Let us consider the question of the choice of 
independent invariants in many-point diagrams. 
The amplitude of the n-point diagram 
v(pi> ... , Pk I Pk + 1, ... , Pn-t) depends on (n- 1) 
four-momenta. We can set up altogether (n- 1) 
x (n- 2) /2 scalar products of these momenta. 
Only ( 3n - 9) invariants will be independent. In 
four-dimensional space there exists between any 
five vectors a geometrical connection that leads 
to the vanishing of the determinant det PiPk 
(i, k = 1, ... , 5). The independent invariants can be 
constructed on the basis of any three vectors, say, 
Pi• P2• and Pa· Indeed, the 3n-9 invariants are 

P1P2, P1P3, ... , P1Pn~! n - 2 

PzP3 , · . · , PzPn-! 

P3P4 , · .. , P3Pn-1 

n-3 

n-4 

independent, since any fifth'order determinant 

(2.8) 

det PiPk(i, k = 1, ... , 5) contains at least one invar­
iant which does not enter in (2.8). All the remain­
ing invariants are expressed in terms of these 
independent invariants with the aid of a determi­
nant made up of Pi> p2, p3, Pi> and Pk (i and k 
fixed) 

m12, (PIPz) 

(p2pi) m22 

(p3pi) 

(p;p1) 

(PkP!) 

(P3Pz) 
(p;pz) 

(PkP2) 

m32 (pap;) (P3Pk) 

(p;p3) m;2 (PiPk) 

(PkP3) (P~<Pi) mk2 

=0. 

(2.9) 

This equation is of second-order in PiPk· Conse­
quently, every ten invariants (p1p2), (p1p3), (p2p3), 

(PtPi) • (P2Pi) • (PaPi), (P2Pk), (PaPk), (PiPk) are con­
nected by a single condition. It can be written in 
the universal form 

From this we see, in particular, that the dependent 
invariants are functions of not all the independent 
ones, but of nine only. 

3. DIFFERENCE EQUATIONS 

In I we obtained a formal solution for the v­
functions, starting from the commutation relations 
for equal times. This solution is a system of m 
equations for each function 

v(p1, · · · I · · ·, Pm) = v(1, 2, ... I ... , m) = Vm, 

v(i, ... , klk+1, ... , m) 

= R;(1, ... I ... , m) + K;(1, ... , 0; ... I ... , m). (3.1) 
Here 

R;(1, ... , klk + 1, ... , m) = i(2n)-'" ~ d"xeiP;x 

X (pf, ... , O;, ... ,pkl8(-xo)[;(x),j(0)]-1Pk+I, ... ,pm), 

(3.2a) 
where Oi denotes the absence of a particle with 
momentum i, if i = 1, ... , k. Alternately, 

R;(1, ... , klk + 1, ... , m) = i(2n)--'f, ~ d"x e-ipix 

X(p~, ... , Pkl8(-xo)[;(x), j(O)l-IPk+h ... , 0;, ... Pm>, 

(3.2b) 

if i = k + 1, ... , m. Ki are arbitrary functions that 
do not depend on Pi· This solution is formal, be­
cause it contains undetermined, generally speak­
ing divergent, Ki-terms (or quasilocal terms). 
The presence of m different equations ( 3.1) for 
each vm-function, and also the covariant proper­
ties of these functions, make it possible to ex­
clude from the equations the undetermined Ki­
terms. This was first done in I by formally dif­
ferentiating the system ( 3.1) with respect to the 
invariant variables, using as an example simple 
v-functions (including a six-point diagram). We 
present here a difference method for eliminating4> 

the Ki-terms and deriving of a difference (or in­
tegral) form of the equations. These equations are, 
naturally, solutions of the corresponding integra­
differential equations in I, with allowance for the 
additional conditions in the region of variation 
(2. 7) of the independent invariants. 

The equations for the lower v-functions (three-, 

4)See also [5]. 
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four-, and five-point diagrams) are of greatest 
practical interest. We shall therefore derive them 
in greater detail, and write out the right side of 
the four-point diagram in explicit form in terms 
of other v-functions. We consider for simplicity 
identical particles. 

Three-point diagram. We have, generally 
speaking, three different v-functions: 

v(12j0) == v(p~,p2j) = (p,,p:di(O) IO>, 

v(j12) = v(jp,,p2) = (Ojj(O) jp,,p2), 

v(112) = v(pdp2) = (pdj(O) IP2>. (3.3) 

Since v*( 112) = v(12l 0) we can confine ourselves 
to an analysis of only two: v( 121) and v( 112). We 
denote 

V+(s) = v(12j), v-(s) = v(1j2) = v+(--s), 

as is seen from (2.5);5> Ri(121) = Ri(s), R (112) 
= Ri(s) = Rt(-s), s = EiE2 - Pi· p2 is the only 
invariant on which the three-point diagram de­
pends. 

The invariant form of ( 3.1) is: s> 

{ R1±(s) + K 1± 
v±(s) = R2±(s) + K2 s ~ m2. (3.4) 

Kf are constants that satisfy the conditions Ki 
= K{ and K2 = K1. These conditions follow from 
relations (3. 7) of [ 21. The difference equations are 
obtained in elementary fashion: 

v±(s)-- v±(s0 ) = R;±(s)-R;±(so), i = 1, 2. (3.5) 

What is specially singled out is the threshold value 
s 0 = m2. At this point v ±(f) do not have imaginary 
parts. 7> If V±(s) do not vanish when s- co, then 
the theory, at first glance, will contain two arbi­
trary constants, say A.± = V±(m2). However, the 
commutation relations for different times (or the 
microcausality conditions) will be satisfied only if 
(see (3.4)) 

(3.6) 

Thus, the three-point diagram can introduce 
into the theory only one arbitrary parameter. If 

S)The relation v+(s) = v-(-s) does not denote that we as­
sume them to be a single analytic function, although in the case 
of a three-point diagram and identical masses there is a rigorous 
proof of this fact. 

6 >1n fact, owing to symmetry and in variance, v(12 I) = v(2ll) 
and v*(ll2) = v(2il), we get R,+ = R/ and R,- = R2-, so that 
for V± (s) we get only one equation each. 

nv_(s) = v* _(s) in the entire physical region. 

v±(s) -o as s -co, then we get from (3.7) 
(so = m2) 

~=R;±(m2) -R;±(oo), i= 1,2. (3.7) 

Equations ( 3. 6) and ( 3. 7) in this case can be re­
garded, to some degree, as conditions that deter­
mine the admissible ( "eigen' ') values of the inter­
action constants A.± in order for the three-point 
diagrams to have solutions that decrease at in­
finity. 

We note that for a three-point diagram it is 
simpler to use in lieu of (3. 5) the dispersion rela­
tions, in those cases when the latter can be rigor­
ously proved within the framework of the axio­
matic approach. 

Four-point diagram. In this case, since 
v*(12l3) =v(3l12) and v*(123l) =v(l123), there 
are two different v-functions: 8> 

v(1231) = (Ph P2. Palj(O) IO> = v+(s, u, t), 

v(12j3) = (PJ, P2Ji(O) IPa> = v-(s, u, t). 

Each of them, in accordance with (2.6), depends 
on three invariants s = PiP2• u = P2P3, and t = PiP3· 
When p4 = Pi + P2 - p3 lies on the mass shell, 
that is, p4 = +v'(Pi + P2- p3)2 + m2, the function 
v(12j3) describes the real process of scattering of 
particles (1 and 2) in (3 and 4), while the invari­
ants s, u, and t are connected by the relation9> 

s - t - u + m2 = 0. 

Equations ( 3.1) can now be written in the form 

( 3.8) 

where 

R;+(s, u, t) = Ri(123l),Rc(s, u, t) = R;(12j3), 

i = 1, 2, 3. 

In addition 

Ka+(s) = Ka-(s). (3.8a) 

Eliminating Kf from (3.8), we get 

v±(s, u, t) - v±(s0, u, t0) =I R 1±(s, u, t) - R,±(so, u, to), 

v±(s, u, t) - v±(so, u0, t) = Rz±(s, u, t) - Rz±(so, Uo, t), 

v±(s, u, t) - v±(s, u0, t0) = R3±(s, u, t) - R3±(s, uo, to). 

(3.9) 

The arbitrariness in the choice of the points s0, llo• 

8 >For an n-point diagram the number of different v-functions 
is [n + sin (rrn/2)]/2. 

9 >For convenience we have not chosen Mandelstam variables. 
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and to in each equation of ( 3. 9) is limited here by 
the physical region (2. 7). Combining these equa­
tions, we obtain a set of difference equations of 
the type 

v±(s, u, t) = v±(s0, uo, t0 ) + R 1±(s, u, t) - R 1 (s0, u, to) 

+ Rz±(so, u, to) - Rz±(so, uo, to); 

v±(s, u, t) = v±(so, uo, t0) + Rt±(s, u, t) - R 1±(s0, u, t) 

+ Rz±(so, u, t) - Rz±(so, uo, t) + Ra±(so, Uo, t) 

- Ra± (so, uo, to) 

etc. These and similar equations have major 
shortcomings: first, V± (s0, Uo· t0), which is the 
boundary value or the arbitrary constants of the 
equation, is in general a complex quantity; second, 
because of (2. 7), the right sides of the functions 
v ±( s, u, t) are not defined in the entire physical 
region of s, u, and t. For example, the region of 
variation of the invariant u in Ri(s0, u, to) is nar­
rower than the regional variation of this invariant 
in v(s, u, t). 

Exceptions are the equations with boundary 
value v± (s0, llo• to) at points that are physically 
singled-out, that is, at the threshold (s0 = llo = t0 

= m 2) or at infinity (s, u, t-oo). We note that the 
threshold is the only point in the physical region 
(2. 7) where the amplitude is pure real. 10 > 

If we fix, for example, s = m2 = 1, then the 
physical region (2. 7) degenerates into a straight 
line: 

u2 +t2 -2tu::::;;O or (u-t) 2 ::::;;0, 

that is, u = t. Therefore, every subtraction must 
of necessity fix two invariants. Using this circum­
stance and the symmetry of the R-functions 

± ± ' R1 (s, u, t) = R2 (s, t, u), we obtain three different 
equations p .. ± = v±(1,1,1)): 

v(s,u,t) = 

A± +R,±(s, u, t) -R,±(u, u, 1) 

+ Rz±(u, u, 1) - Rz±(1, 1, 1), 

A±+ R2±(s, u, t) - R2±(1, t, t) 
+ Ra±(1, t, t) - Ra±(1, 1, 1), 

A±+ R3±(s, u, t) - Ra±(s, 1, s) 

+ Rt±(s, 1, s) - R,(1, 1, 1). 

From (3.8) and (3.8a) it follows also that 

A+- A-= Ra+(1, 1, 1)- Ra-(1, 1, 1). 

Thus, in the case when v ± (s, u, t) do not vanish as 

lO)The proof of this statement for equal masses is elemen­
tary. In the case of unequal masses it becomes generally speak­
ing incorrect. 

s, u, t-oo, only one arbitrary constant enters into 
theory, "-+ or A._. If V± (s, u, t)- 0 while s, u, t 
tend to infinity, then A.± can be expressed with the 
aid of (3.10) in terms of the Rf functions, for ex­
ample 

A± = Ra±( oo, oo, 1) - R3± ( oo, oo, oo) 

+ R,(l, 1, 1)- R1 (oo, oo, 1). 

We see from (2. 7) that one invariant cannot tend to 
infinity. In order not to violate (2. 7), at least two 
invariants must tend simultaneously to infinity. 
This fact also strongly limits the number of dif­
ferent difference equations with boundary condi­
tion at infinity. In order not to clutter up the text, 
we shall not write these out. We present for illus­
tration one of the R-functions in the right side of 
(3.10). For example, 

R _ ( ) _ (Z ) ,1 " 1 1 dkt ... dkn 
I s, u, t - :rt 2 L.! I \ . ' --,c---

: n. · 2wt ... 2wn 

X { v(p2jk1, ... , kn)v(kt, ... , kn jp~) 

X ( ~k; ~~--=- Pz) __ BS.L:k; + I?!_±_Pa) ) 
\ -L:w;-i-EI+Ez-ie l:co;-E3+E1 -ie 

+v(jpa, k,, ... , kn)v(kt. ... , knpzj) 

X ( ·=-1~~~k~-t~ --;;, ~ ie- 2:~J;L::;~-~~~- Pz)i_J 

+ v(pzjpak!, ... , kn)v(k,, ... , knl) 

X (1_6 S_L:k; =_R~=-~±_~)__ _ _ o(L:k; + Pt) \ 
-L:w; + E1 + E2- Ea- ie 2:c•J; + E 1 - ie ,! 

+v(jk,, ... , kn)v(kt. ... , k,pziPa) 

X ( ---~ ~~~-:--~!L __ ----~( L: kij- Pt_+ P2 - _!1~-- J } 
-2:w; + E1- ie L:c•l; + E1 + E2 -- E3- ie . · 

n 

LW;= ~(!);, 
i=i 

n 

L:k;- ~ k;. 
i=1 

Five-point diagram. We confine ourselves to a 
consideration of only 

The condition (2. 7) relates the following invariants: 

(3.11) 
<D ( S23, S:!f" S31,) ::::;; 0, <D ( S[J, Sg, Sat,) ::::;; 0. 

We shall consider difference equations with bound­
ary condition at the threshold, that is, all sij = m 2 

= 1. If, for example, s 12 = 1, then we get from 
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( 3.11) s13 == s 23 and s 14 == s24. Thus, even the first 
subtraction fixes all the invariants connected with 
the momentum p1. Analogously, the succeeding 
subtractions fix all the invariants connected with 
momentum Pi (i -number of the corresponding 
Ri function). One of the difference equations for 
the five-point diagram has the form (A. 5 =vis·· == 1) 

l] 

v ( Sij) = /..5 + R1 ( S12, S13, Szs, s11., Sz4, ss,) 

- R1 ( 1, Szs, Szs, Sz4, ss,) + Rs (1, Szs, Szs, szq, sz,, ss4) 

- Rs(1, 1, 1, s24, sz,, s24) + R4(1, 1, 1, S24, Sz,, sz,) 

- R4(1, 1, 1, 1, 1, 1). (3.12) 

We emphasize that in the case of a five-point dia­
gram all the v-functions must vanish at infinity; 
otherwise the system of equations will not have 
finite solutions. The proof of this statement by 
perturbation theory is obvious (since Lint 
~ A. 5<p5/5! is the nonrenormalizable variant of the 
scalar theory). A proof which does not use per­
turbation theory will be published elsewhere. 

Six-point diagram. Dependent invariants appear 
among the scalar products Sij == Pi Pj for the first 
time starting with the six-point diagram. We shall 
develop a method of eliminating the Ki-terms, us­
ing a six-point diagram as an example, and then 
generalize this method to the case of an arbitrary 
n-point diagram. 

We write the system (3.1) for one of the six­
point diagrams: 

I R1(123j45) + K1 (23145), 
Rz(123j45) + Kz(13 45), 

v(123j45) = Rs(123j45) + Ks(12j45), 
R4(123j45) + K,(12315), 
R5(123j45) + K5(123 4). 

P6 = P1 + Pz + Ps - P• - P5, P62 =I= m2• 

(3.13a) 
(3.13b) 
(3.13c) 
(3.13d) 
(3 .13d) 

The number of invariant scalar products made 
up of kinematically independent momenta Pi 
(i == 1, ... , 5) is equal to 10. They are connected 
by a single relation of the type (2.9). We take it, 
for example, in the form 

(3.14) 

i.e., we assume the invariant s 45 to be dependent. 
Then Ki> K2, and K3 depend implicitly on all nine 
invariants, so that the simple subtractional proce­
dure described for the three-, four-, and five­
point diagram does not hold: the sequence of fix­
ing the invariants and elimination of the K-terms 
is not arbitrary. As before, we choose as the 
boundary value v(123l45) I si· == 1 = A. 6• At first we 
fix s 45 == 1 and eliminate thd Krterm from(3.13d). 
We then get from (2. 7) s 14 == s 15, s 24 == s 25 , and 
s 34 == s 35. We next put s 35 == 1, s 13 == s 15, s 23 == s 25 , 

etc. As a result we obtain the equation 

(
12131415) (12131415) 

23 24 25 23 24 25 
v 34 35 = "-s + R 4 34 35 

45 45 

( 
1213 15 15) ( 1213 15 15) 

23 25 25 23 25 25 
- R 4 35 35 + Rs 35 35 

1 1 

(
' 1215 15 15 ) ( 12 15 15 15) 

252525 252525 
- Rs 1 1 + R2 1 1 

\ 1 1 

( 
1515 15 15) ( 1515 15 15) 

111 111 
- R2 1 1 + R1 1 1 

1 1 

(
1111) 1 1 1 

- R1 1 ~ . (3.15) 

For convenience we have arranged all the invari­
ants sij = (i, j) in the form of a matrix. Equation 
( 3.15) contains R4 and R5 with s 45 == 1, s14 == s15, 
s 24 == s 25, and s 34 == s 35. It is obvious that this does 
not impose additional limitations on the region of 
variation of the independent invariants, since 
( 3.14) is satisfied identically (two colums in the 
corresponding determinant (2.9) are identical). 

In the Appendix we write out in explicit form 
the equations for ann-point diagram in both the 
difference and integra-differential forms, as well 
as the supplementary conditions. 

4. DISCUSSION 

We have thus succeeded in showing that the un­
determined quasilocal terms are eliminated from 
the equations or, more accurately, that they can 
be expressed in terms of R-functions for fixed 
values of certain invariants. The theory contains, 
in addition to the masses, a finite number of con­
stants. 

In our opinion, it is of interest to pursue the 
following investigations: 

1. Search for simplest solvable models, espe­
cially in a space with a smaller number of dimen­
sions. It must be emphasized here that hopes for 
finding an exact solution in a real four-dimensional 
space are practically nil, since the simplest model 
is equivalent (from the point of view of the La­
grangian formulation) to the renormalized variants 
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of the interaction of scalar particles with Lint(x) 
~ :\3cp3(x) or ~ :\4cp4(x). 

2. Derive and analyze, outside the framework 
of perturbation theory, an approximate system of 
equations which would retain to the maximum de­
gree the main symmetry properties of the initial 
exact system. 

The principal difficulty in this case lies in the 
following: any cutoff of the system with respect to 
the number of intermediate-state particles violates 
the rigorous microcausality conditions, 11> and 
consequently also the conditions for relativistic 
invariance. To be sure, we can first write out ex-
act equations in invariant form, and then carry out 
the cutoff. We obtain equations that are invariant 
in form, but differ in accordance with the system 
of coordinates in which the relativization of the 
exact equations is carried out. It is not excluded 
that this arbitrariness can be used to minimize 
the discarded terms and by the same token choose 
the most suitable coordinate frame. This difficulty 
is general in any axiomatic approach in quantum 
field theory. It can be apparently circumvented 
only by finding in lieu of the ''particle-number'' 
variables more convenient quantum numbers which 
characterize the possible states of the interacting 
particles. 

3. Solve the equations for small "threshold" 
energies. In this area we can hope to obtain in the 
nearest future results that are directly connected 
with experiment. Thus, the equation for the inter­
action of two particles with masses 11 and M (for 
example, mesons and nucleons) goes over in the 
static approximation M-ao into equations of the 
Low-type on the mass shell, [Sl but with a number 
of additional terms representing the contribution 
of 1r1r interaction and different resonances to the 
processes of scattering and photoproduction of 
pions on nucleons at low energies. 

We note also that the possibility of expressing 
quasilocal terms by means of the initial ampli­
tudes can be utilized also in approximate equations 
that follow from the single dispersion relations, 
especially to refine the Chew-Low-Nambu-

Goldberger equation, [ 10 1 in which no account is 
taken of 1r 1r interaction. 

4. The nonrelativistic limit and comparison 
with the Schrodinger equation. An investigation 
of this question is of interest both from the gen­
eral point of view (the presence of an additional 
class of solutions, limitations on the admissible 
character of the potentials, etc.12l), and from the 
point of view of practical applications: it is de­
sired to develop a method for obtaining at low en­
ergies approximate equations in which elementary 
and complex particles (bound states) are consid­
ered on par and one can take the relativistic cor­
rections consistently into account. Of special in­
terest, from our point of view, is the derivation 
and proof of equations for nuclear reactions ( "axi­
omatic" theory of nuclear reactions). 

5. The problem of bound states in the axiomatic 
approach. At first glance, the axiomatic approach 
does not distinguish between ''elementary'' and 
"complex" particles. However, the equations ad­
mit of a different treatment and, in particular, of 
formulation of the problem of construction of all 
particles from the fundamental primary field (in 
analogy with Heisenberg's ideas). "Complex" 
particles appear as pole singularities in the am­
plitudes of the transitions of the primary parti­
cles, at certain fixed values of the invariants and 
parameters that enter into the theory (masses and 
"charges" of the primary particles). The ampli­
tudes of transitions in which complex particles 
participate are constructed by means of a definite 
procedure of analytic continuation from the ampli­
tudes of the primary particles. 

The unitary S-matrix is made up in this case of 
the complete aggregate of all the amplitudes. This 
raises the very important and fundamental ques­
tion: are there any finite solutions for the initial 
system if the primary particles are fermions? 
Within the framework of perturbation theory, the 
axiomatic equations do not have finite solutions 
(nonrenormalizability of the four-fermion inter­
action). If no such solutions exist, then we must 
either forego the idea of existence of a primary 
field and primary particles, or our notions con­
cerning the interaction at small distances should 

11) be radically reviewed. 13 > 
This is brought about by the fact that such a cutoff is M d t .1 d lt f · t" t" f 

equivalent to the assumption that the current operator j(x) repre- ore e. ai e ~esu s 0 .an Inv.es Iga Ion ° 
sents a functional polynomial of finite degree in the in-operators. these questwns Will be pubhshed m other papers. 
As is well known["], such currents do not commute outside the 
cone, with the exception of the trivial case corresponding to a 
unit S-matrix. This is connected with the fact that the micro­
causality reflects the properties of interacting particles at arbi­
trarily small distances, when the number of particles itself in­
creases without limit. 

12)See also [11]. 

13)In this connection, the ideas of a curved p-space, in­
tensely developed recently by I. E. Tamm, are very attractive. 
In Tamm's approach the four-fermion interaction is renormaliz­
able. 
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APPENDIX I 

EQUATION FOR n-POINT DIAGRAM IN 
DIFFERENCE FORM 

The derivation of the equations (the elimination 
of quasilocal terms) is carried out by the same 
method as for the six-point diagram. If we choose 
(2. 8) as the independent invariants, then one of the 
equations with boundary condition at the threshold 
will take the form 

(

1213 ... (1,n-1) ) 
23 ... (2,n-1) 

v 

(n-2, n-1) 

(
1213 ... (1,n-1) ) 

23 ... (2,n-1) 
=An+ Rn-2 : 

(n-2, n-1) 

(

1213(1,n-1)(1,n-1) ) 
(2, n-1) (2, n-1) 

-Rn-2 : + · · · 
(n- 3, n-1) (~ -3, n-1) 

( (1,n-1) ... (1, n-1)) 
1 .. . 1 

... + R1 \ l 

(
11 ... 1)· 

1 ... 1 
-Rt : . 

1 

Here A.n = r for all sij = 1. 

APPENDIX 2 

EQUATIONS FOR n-POINT DIAGRAM IN 
INTEGRO-DIFFERENTIAL FORM 

We choose the independent invariants as in (2.8). 
Since the K-term is an (n- 1)-point diagram, for 
some arbitrary choice of the independent invari­
ants in each of the K-terms the equations take the 
form 

where sij are all the independent invariants; sa 
= { S45• s56• .. ·, Sn-2, n-1} • and 

as~, 

iJs;4 ' 
iJs4, 
iJs;5' 

. ' '. 

'. 

asi6 ' asi6 ' . 

OS45 OSn-2, n-1 

OS;4 ' • • iJsi; n-2 ' 

OSn-3, n-2 OSn-2, n-t 

-asi, n-;;-' OS;, n-2 

A~ is A i in which the a-th column is replaced by 

( 

iJ(R4-Ri) ) 
0Si4 

iJ (Rn-~- R,) ' 
iJsi, n-2 

A~= 0 if i -=f. 1, 2, 3. 
The supplementary conditions are 

iJ(Ri -R;)_ ~(. ~,,i _ 11u.i ' iJs" 
OS;; a \ f1i f1i OS;; ' 

i =· 1, 

i = 2, 

j = n -1, 

j = 2,3, 

i= 3, 

i = 1, 2, 3. 
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