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Amplitude and phase fluctuations of a plane monochromatic wave propagating in a turbulent 
medium are calculated. The region of strong amplitude fluctuations for which perturbation 
theory is not valid is investigated. A solution applicable to strong fluctuations is obtained 
by taking cumulative distortions of an incident wave into account. This accounts for the 
"saturation" of amplitude fluctuations observed experimentally with increasing distance 
traversed by a wave in a turbulent medium. 

J. Turbulent mixing in a thermally nonuniform 
gaseous medium induces fluctuations of its 
dielectric constant which give rise to fluctuations 
in the amplitude, phase, and other parameters of 
electromagnetic waves propagating through the 
medium. The fluctuations are especially strong in 
the optical region. For example, intensity fluc­
tuations of light propagating in the atmosphere 
sometimes exceed the mean intensity, although the 
fluctuations of the dielectric constant are only of 
the order 10-6-10-5• 

Amplitude and phase fluctuations have been 
calculated by some authors using Rytov's method 
of smooth disturbances (MSD).[t-4] Gracheva and 
Gurvich [5] measured fluctuations of light intensity 
in the surface layer of the atmosphere and com­
pared their results with a theory based on the 
MSD. They found satisfactory agreement so long 
as the rms fluctuation a1 of the logarithm of the 
amplitude as calculated by the MSD does not ex­
ceed 0.8. In contrast with any higher theoretical 
values the experimentally measured value ceases 
to increase or increases much more slowly 
(Fig. 2). 

The discrepancy between the calculation and 
experiment results from breakdown of the condi­
tions for applying the MSD, which is based on 
linearizing the nonlinear equation for the logarithm 
of the field. An attempt to take into account the 
nonlinear term in the equation by summing a 
perturbation -theoretical series has not yielded a 
positive result, since in the given order of per­
turbation all terms are comparable, differing only 
in their numerical coefficients. A different pro­
cedure is therefore required for the solution of 
the problem. 

2. Let us consider a medium with random 

fluctuations of the dielectric constant E ( r ). We 
shall assume that the fluctuation frequencies of E 

are small compared with the wave frequency w 
and that the wavelength A. is small compared with 
the minimum dimensions of the inhomogeneities 
(the internal scale of turbulence). We can then 
neglect radiation depolarization effects and can 
describe wave propagation by means of a scalar 
wave equation for the complex amplitude of the 
field: 

!:J.E + k2 [1 + e1 (r) ]E = 0, 

e{r)· = (e)[i + et{r) ]. (1) 

Here k is the wave number, and E can represent 
any field component. 

Let the inhomogeneous medium be located in a 
region x > 0 upon which a plane wave A0eikx 
impinges. We shall be interested in the amplitude 
and phase for x > 0. We write the wave as 

E(r) = Aoeikr+q><r>, k = (k, 0, 0). (2) 

Then Re cp = ln (A/ A0 ) is the fluctuation of the 
logarithm of the amplitude and Im cp = S - k · r is 
the phase fluctuation. Substituting (2) into (1), we 
obtain 

l:lqJ+2ikV<p+ (V<p) 2 +k2e1 (r) =0. (3) 

In the MSD Eq. (3) is linearized; this means that 
we drop the term ( Vcp )2• This is equivalent to 
solving the equation in the first order of perturba­
tion theory. 

We make the substitution cp = uw and impose 
an additional condition on the functions u and w: 

2Vu + 2iku + u2Vw + uwVu = 0, (4) 

after which the coefficient of \lw vanishes in the 
equation for w. The integration of (4) leads to the 

1083 



1084 V.I. TATARSKII 

relation 

2ln u + uw = -2ikr. (4a) 

Using (4) and (4a), the equation for w becomes 

~w+ [~lnu- (Vlnu)2]w+k2et{r)/u{r) =:0. (5) 

The system (4a) and (5) is equivalent to the initial 
equation (1). 

The linearization of (3) is equivalent to neglect­
ing the term uw in (4a). In this case, denoting the 
approximation by means of the subscript "1" we 
obtain 

u1 = e-ikr, 

~w1 + k2w 1 = -k2et{r) eikr. (6) 

These equations are equivalent to the MSD equa­
tions; they lead to the solution 

(7) 

which coincides with the MSD solution. We calcu­
late the term uw in (4a) by iteration, making the 
substitution uiwi =<Pi in first approximation. 
Successive iterations will be performed approxi­
mately by reduction to a nonlinear integral equa­
tion that will be solved numerically. 

We substitute uw R;; <Pi in (4), and 

ll2=exp[-ikr- 1/ 2qJ1 (r)] (8) 

in (5), thus obtaining 

~w + [k2(1- 1he1)·- 1/4(VqJ1)2]w 
= -k2e1 (r) exp [ikr + 1/2cpi(r)]. (9) 

We here neglect the small quantities k2Ei, and 
( "V<Pi )2 in the coefficient of w. When these terms 
are taken into account the mean value ( w) de­
creases with distance; we shall neglect this effect. 
The equation for w then becomes 

~w + k2w = -k2et{r) exp [ikr + 1/ 2cpt{r)]. (9a) 

By contrast with the corresponding MSD equation, 
the scattered wave is here 

exp [ikr + 1/ 2qJi(r)], 

i.e., phase and amplitude distortions are here in­
cluded in first approximation. 

It is easily understood that in the additional 
factor 

where Xi = ln (A/ A0 ) is the fluctuation in the 
logarithm of the amplitude and Si is the phase 
fluctuation in first approximation, the phase factor 
eiSi/2, which can undergo a sign reversal, plays 
a decisive part. Moreover, in a turbulent medium 
we have ( x~) « (S~). Therefore we shall use 

<Pi R;; iSi in (8) and (9a). 0 Solving (9a) and multi­
plying the result by u2, we obtain 

(jl2{r)=}!_ ("I 81 (r'~l exp[iklr-r'l-ik(r-r') 
4n J r-r 

(10) 

Equation (10) can be considerably simplified, as in 
the MSD, for a wavelength that is much smaller 
than the internal scale of the inhomogeneities. In 
this case the exact Green's function in (10) can be 
replaced by an approximation that corresponds to 
the Fresnel approximation for diffraction. The 
integration region is then confined to 0 < x' < x. 
We thus obtain 

k2"' d' 00 

cp2 (x, y, z) =- \ __ x_, I I dy' dz' e1 (r') 
4n~x-x ~J 

(11) 

This equation differs from the corresponding MSD 
expression through the presence of the factor 

exp [~s~(r')-~SI(r) J. 
We note that (11) contains terms of a perturbation 
series corresponding to (3) in any order. This 
can be shown easily by a series expansion of the 
additional factor. 

The real and imaginary parts of (11) give ex­
pressions for the logarithm of the amplitude and 
the phase. The mean value ( <P 2) does not vanish, 
because Ei and Si are correlated. It can be 
stated, however, that this mean value ( <P2 ) will 
be of at least the second order of smallness in Ei. 
Before determining the mean value ( <P 2 ) we 
shall consider the mean squares of the real and 
imaginary parts of <P 2• For the sake of brevity we 
introduce the notation 

P1,2 = {0, Y- Y1,2, z - z1,2}, a1,2 = kp\2/2 (x- x1,2), 

a1,2 = 1/2 [S1 (r1,2) - S1 (r)]. 

For the mean square of the real part of <P2 we 
then obtain 

( k2 \z "' dx1 "' dx2 1 1 r 1 <r.Z> = -I ) --) -- J J J J dy1dz1dy2dzz 
\ 4nl 0 X - X1 0 X - X2 -oo 

(12) 

l)A simple calculation shows that when the term X• is taken 
into account along with attenuation (extinction) using the for­
mula cp = X• +iS, + <cp>, where <cp> is calculated in the second 
MSD approximation,[•] the results differ only very slightly from 
those that will be obtained by us here. 
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We now note that S1 ( r 1 ) is given by the inte­
gral of E1 over a large volume enclosing a beam 
reaching the point r 1• It follows that S1 ( r 1 ) will 
be weakly correlated with E1 ( r 1 ), and that it will 
be a Gaussian distribution in virtue of the central 
limit theorem of probability theory. Therefore, 
when averaging in (12) we can assume 

<et(ri)e1(r2) cos (a1 + a1) cos (a2 + a2)) 

~ <et(r!)e1(rQ))<cos (a1 +at) cos (a2 + a2)), 

and to calculate the mean product of the cosines 
we use formulas that are valid for a Gaussian 
random variable )': 

<sin y) = 0, <cos v> = exp (-1/z< y2)). 

The calculations lead to the formula 

+ exp [1/aDs, (r~o r2)- 1/4Ds, (r, rt) 

- 1/ 4D8 ,(r, r2)]cos(at+az)}, 

where BE ( r 1, r 2 ) is the correlation function of 
the fluctuations of E, and Ds1 ( r 1, r 2 ) is the 
structure function of the phase fluctuations: 

Ds, (r1, rz)· = < [S1 (r1) - S1 (rz) )2). 

(13) 

Equation (13) differs from the corresponding MSD 
expression by the presence of the additional ex­
ponential factors. An analogous formula for the 
mean square phase fluctuation differs from (13) in 
the sign of the second term within curly brackets. 

3. It is difficult to perform a calculation using 
(13). We shall therefore use several additional 
simplifications that have clear physical meanings 
but require further mathematical justification. 
First of all, we shall make use of the fact that the 
longitudinal radius of correlation of phase fluctua­
tions is very large, being of the order of the length 
of the entire trace. We can therefore use the ap­
proximation 

Ds, (rt, rz) ~ Ds, ( Xt ~ Xz, P1- pz) , 

where Ds1 ( x, p) is the structure function of the 
phase in the plane x = const. We now consider the 
expression 

A = 2D8 , (r, r1) + 2Ds, (r, rz) - Ds, (rt, rz). 

Identical considerations lead to the approximation 

( Xt + Xz ) + 2D ( Xi + Xz ) A~ 2Ds, --2-, Pi s, 2 , P2 

-D (xt+xz ) s, 2 , Pi- Pz 

(in all three terms, for the plane x = const we 
have selected x 1 + x2 =const, which is valid to 
about the same degree of accuracy). The struc­
ture function Ds1 ( x, p) in a turbulent medium has 
the form ~ p 5 / 3• For a structure function of the 
form ~ p2 we have 

( 
X 1 + X2 \ 

A =Ds, --2-, Pt + P2/· 

Approximately the same relations hold true for 
Ds1 ( x, p) ~ p 513 because of the small difference 
between the exponents % and 2.2 ) 

As a result of all these approximations (13) 
becomes 

[ 1 ( X1 + Xz \] + exp - 8Ds, --;z--, P1 + p2) 

(14) 

Let us now consider the integrals with respect 
to the variables p1 and p2• The important inte­
gration region is determined for the first term by 
the factor 

The argument of the cosine is of the order 
k ( p~ - p~ )/ ( 2x - x1 - x2 ) where the mean value 
of the denominator has been taken. The integral 
over the region 

- I k(pt2- pz2) l 
q= ~1 

, 2.r- x1- x2 

is small because of the oscillations of the cosine. 
Therefore integration over the region q < 1 is 
most important, although in this region the argu-

2)A simple calculation shows that the corresponding error 
in the exponential index does not exceed 0.25 in the important 
integration region given by (lSa), and is even smaller in most 
of the integration region. 
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ment Pt - P2 of the function 

(
Xt +x2 ) Ds, --2-, Pt- P2 

is of the order 

where {3 is a numerical constant of the order of 
unity. Applying the theorem of the mean to the 
integrals over p1 and p2, we can place the func­
tion Ds1 outside of the integrand and use the 
substitution (15) for jp1 - p2 j. The same consid­
erations apply to the second term in (14), which 
leads to 

The constants {3 in (15) and (15a) can differ in 
general, but will be taken as identical for the sake 
of simplicity. 

Using (15) and (15a), we obtain 

k2 ) 2 z dxt z dx2 "" 
('J.2) = (- ~ -- ~ -- ~ ~ ~ ~ dy1 dz1 dy2 dz2 4:n; 0 X - X! 0 X - X2 _ 00 

X exp{ -~Ds,( X! ;:xz 1 ~[~(X_ X1-;: X2 )]"')} 

kpt2 kpz2 
X cos cos::----'---

2(x- xi) 2(x- Xz) 
(16) 

The analogous formula for ( 82 ) differs from (16) 
only by the replacement of cosines with sines. 

Equation (16) reduces our present problem to 
the problem that was solved in [4] for amplitude 
and phase fluctuations in a medium with smoothly 
varying parameters of dielectric-constant fluc­
tuations. Indeed, Eq. (16) can be treated as the 
(MSD) solution for amplitude fluctuations in a 
medium with the "effective" correlation function 

depending on the longitudinal coordinate 
( x1 + x2 )/2. When the fluctuations of the dielectric 
constant are described by a % law[TJ we have 

([et(rt) - Et(rz)J2> = C.2!rt- rzl'''· 

Equation (17) gives an expression for the "effec­
tive" structural characteristic 

(17a) 

where the expression 

has been used for the structure function 
Ds1 ( ~, p) derived in the MSD approximation. 

We now use the formulas given in [4] for the 
mean square fluctuations of the logarithm of the 
amplitude and the phase difference in the case of 
variable CE :[4] 

"" 
('J,2) = 11/a· 0.077k'lo S C82 (~).(x- 6)'1• d6, (18) 

0 

" D8(x,p)=0.73k2p'f,~ Ca2 (6)d6. (19) 
0 

Substituting (17a), we obtain \ x2 ) and DS (x, p) 
corresponding approximately to cp2 ( r). 

4. The foregoing calculation of the amplitude 
and phase fluctuations was based on the MSD 
phase structure function Ds1 ( x, p ). When (19) is 
used to calculate the phase structure function in 
the next approximation, it is found to differ 
greatly from the initially used function Ds1 ( x, p ) 
if 

which is the calculated MSD mean square fluctua­
tion of the logarithm of the amplitude, is con­
siderably larger than unity. Calculating a new 
phase structure function and inserting it into (19), 
we obtain the next approximation etc. 

Obviously, if this iterative process converges, 
as can easily be proved, the limiting structure 
function of the phase satisfies the integral equa­
tion 

Ds(x, p) 

= 0.73Ce2k2p''•! exp{- ~Ds ( 6, ~ [ 2 (x;: 6> J")} ds. 
(21) 

The solution of this equation can be sought in the 
form 

Ds (x, p) = 0. 73Ca2k2p'l•xf(x / l)·, 

where the scale l is defined by 

2.1~'i•a12(l) = 2.1W'•·0.077Cs2k''•l"'• = 1 

(22) 

and f ( t) is a dimensionless function of a dim en­
sionless argument. Using a new integration 
variable ~ = xp, Eq. (21) can be transformed into 

f 

f(t)= ~ exp[-t"l•p(1-p)'l•f(pt)]dp, (21a) 
0 

where t = x/l. Assuming t = 0 in (21a), we obtain 
f ( 0) = 1. Differentiating (21a) with respect to the 
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FIG. 1 

variable T = t 1116 and then assuming t = 0, we 
obtain [df( T)/dTh=o and thus arrive at the 
series expansion of f(t): 

f(t) = 1- 6/u· 6/11t11/' +... (23) 

When t » 1 the most important region in (21a) 
is the vicinity of the point p = 1. Hence the 
asymptotic behavior of f ( t) for large values of 
the argument is represented by 

1 [ ( 11 )]'/u 1.045 
f(t)=t r 5. + ... =-t-+··· (t~1). (24) 

For intermediate values of the argument the solu­
tion of (21a) is easily obtained numerically by 
means of a few iterations; the result is shown in 
Fig. 1. Using the asymptotic expression (24), we 
easily find that in the region x » l the phase 
structural function ceases to increase with x, but 
approaches the constant limit 

D8 (x, p) = 0.76C22k2p'l•l (x~l). 

Let us now consider the quantity ( x2 ). Sub­
stituting the derived function Ds (x, p) into the 
formula 

11 "' 
<x2) = --·0.077Ce2k'l• ~ (x- s)'l• 

6 0 

X exp{-! Ds( s, 13[ 2(x;s) r)} ds 

and introducing again the variables p = ~/x and 
t = x/l, we obtain 

11 t"l• i 
<x2) =---~ (1- p)'l•exp [-t 111• p(1- p)'l• f(pt)] dp. 

6 2.113'/• 0 

(25) 

In the region a~ ( x) « 1, i.e., x « l, we now 
obtain ( x2 ) Rl a~ ( x ). In the region al (x) » 1, 
i.e., x » l, the principal contribution to the inte­
gral comes from the vicinities of the points 
p = 0 and p = 1. As a result of some simple cal­
culations it is found that for x » l Eq. (25) ap­
proaches the constant limit 121/30 x 2.1{35/ 3, de-

pending only on f3. Replacing [3 with the parameter 
( x2 ) in (25), we obtain 

QO 

<x2 (x) > 
<x2>oo 

5 llj s~ =Tit • (1- p)'l• exp [-t 111• p(11- p)'l• f(pt)} dp, (25a) 
0 

where t is related to ai ( x )/ ( l)"" by 

tu/, = 121 a12(x) 
ao <xz>.,., • 

rt follows that the ratio ( x2 ) I ( x2 )"" is a function 
of al ( x )/ { l) "". Equation (25a) can easily be 
calculated numerically. 

5. The mean square fluctuation of the logarithm 
of the amplitude is expressed in terms of ( x2 ) 

and (x) by 

([InA- <lnA))2) == a2 :::::!1 <x2(x)>- <x(x))2. 

The first of these two quantities has already been 
derived. The second quantity could be determined 
by averaging Eq. (11). However, (x) can be ob­
tained considerably more simply on the basis of 
energy conservation. The energy flux is expressed 
in terms of x by means of 

P = const EE*n = const A02 exp [2x ( r)] n, 

where n is a unit vector in the direction of wave 
propagation. For an incident plane wave we ob­
viously require 

(exp [2x(r) ]n) = const. 

When, as occurs customarily for wave propaga­
tion in a real turbulent atmosphere, the fluctua­
tions of the propagation direction are small, the 
vector n can be replaced by its undisturbed value 
n0• In this case we have 

(exp [2x(r) ]> = const. (26) 

For the purpose of explicit averaging in this 
formula we must know the probability distribution 
of X ( r ). From (11), in which S1 has been re­
placed by S, it follows that cp is a linear func­
tional of the random quantity 

ei(r') exp {1/2i[S(r')- S(r)].}. 

Although S ( r) is strongly correlated in the direc­
tion of wave propagation, it is considerably more 
weakly correlated in the transverse direction. 
The function €1 ( r) has the finite correlation 
radius L0• Under the condition x » L0, the 
product E1 exp { 1;'2 i [ S ( r' ) - S ( r )1} also has a 
characteristic correlation scale of the order L0, 

which is small compared with the integration 
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region. Therefore (11) can be represented as the 
sum of a large number of uncorrelated terms. It 
follows that the logarithm of the amplitude and 
the phase are Gaussian random quantities, as in 
the case of ui (x) « 1, when employing the MSD. 
This is well confirmed by experimental results 
given in [5] • 

With the Gaussian form of x ( r) the averaging 
in (26) is easily performed and leads to 

exp {2[<x(x)> + <x2(x)>- <x(x)>2]} = const. (27) 

Since for x = 0 we have const = 1, it follows that 

<x2>- <x>2 + <x> = o (28) 

is the relation between ( x2 ) and ( x). Solving 
(28), we obtain the mean square fluctuation of the 
logarithm of the amplitude in terms of ( x2 ): 

u2 = <x2)- <x>2 = (<x2) + if,)''•- if2. (29) 

The function defined by Eq. (29) can then be 
determined only to within an unknown parameter 
( x2 ) , which remains undetermined because of 

00 

the crude method of calculation employed in Sec. 
3. When ui ( x) » 1, u2 ( x) approaches a constant 

limit: 

On the basis of the experimental data in [5] this 
limit is found to be (0.8)2• The corresponding 
value of ( x2 ) is close to unity. The value of 

00 

(30) 

the parameter {3 required to account for the ob-
served saturation level is 1.4; this is an entirely 
reasonable result. 

Figure 2 shows the function in (29) for ( l) 00 

= 1, obtained by numerical integration of (25a) in 
conjunction with the experimental results in L5J. 
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