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The thermodynamic conditions for detonation transition of matter in the metastable phase to a 
state in thermodynamic equilibrium is determined. Gas-dynamic discontinuities or other 
phase transition regimes are considered. 

RECENT progress in high-pressure physics [i] 

has led to new possibilities of obtaining different 
materials (crystalline modifications), including 
some previously unknown. Some of the materials 
obtained at high pressures preserve a thermody­
namic stability, absolute or relative, even under 
normal conditions. In connection with the fact that 
phase transformations of such materials are 
usually accompanied by a thermal effect and a 
volume change, it is interesting to elucidate what 
bearing this can have on the phenomenon of detona­
tion, in other words, whether first-order phase 
transitions can lead in principle to a detonation 
and, if this is possible, then, what are the condi­
tions under which it is possible. Ubbelohde [2,3] 

has pointed both to polymorphic transformations 
and to the possible source of weak detonation 
waves. However, the thermodynamic conditions 
for the realization of detonations in the phase 
transitions have not been studied. The analysis 
that follows is devoted to this problem and to the 
analysis of possible gas-dynamic discontinuities 
in the transformation of a thermodynamically meta­
stable phase to a stable one. 

1. We note first that no detonation is possible 
in any case if the initial state of the material is in 
thermodynamic equilibrium. Actually, however, if 
the phase transitions originate in a shock wave of 
finite width, they will always be damped, as follows 
from the general theory of shock waves, l 4J as a 
consequence of the fact that the points 1 and 2, 
which describe on the PV (pressure, volume) plane 
the thermodynamical equilibrium states of the 
material in front of the wave and behind it, lie on 
the same shock adiabat. Point 2 approaches point 1 
as the shock wave is propagated. In this motion 
along the shock adiabat, the point 2 passes through 
all the thermodynamical equilibrium phase states 
lying on its path. The intersection of the shock 
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FIG. 1 

adiabat and the curves of phase equilibrium lead 
only to breaks in the shock adiabat and to a split­
ting of the shock wave in two, which is possible 
under definite conditions. [5- 7] In the latter case, 
the second wave is damped, followed after its final 
dissipation by the first. Thus, to realize the deto­
nation regime of phase transition it is necessary 
that the initial state at the point 1 be metastable. 

A substance in a metastable phase state is quite 
similar to an ordinary explosive. In both cases, 
the transition along the chord from point 3 to point 
2 corresponds to the detonation regime (Fig. 1) in 
which the substance passes through a series of 
thermodynamical nonequilibrium states (at least 
with respect to composition). There is, however, 
an important difference between the ordinary ex-
plosives and metastable phase modifications. In 
the liberation of the heat of combustion under con­
ditions of thermal isolation, the pressure of the ex-
plosion products is always greater than the pres­
sure of the initial explosive materials at the same 
volume. Therefore, the detonation adiabat on the 
PV plane is located below the shock adiabat of the 
initial material. For a phase transition from the 
metastable phase, both this and the reverse loca-
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tion of the adiabat are possible. The detonation 
regime of the phase transformation is possible in 
principle if, in correspondence with the general 
premises of the theory of detonation, the adiabat 
of the equilibrium state of the material is located 
above point 1 (see Fig. 1) and if there is no great 
loss. [a] (The process of phase transition from 
state 3 to state 2, Fig. 1, can, however, be so slow 
that the critical dimensions of the material neces­
sary for development of a detonation turn out to be 
impossibly large under laboratory conditions. [a ,a] 

For this reason, not all metastable materials 
characterized by the location of adiabats shown 
in Fig. 1 can serve in practice as explosives.n) 

Leaving aside the problem of the critical dimen­
sions of the material, let us consider how its ther­
modynamic properties are associated with some 
location of shock adiabats relative to the initial 
point 1. At the pressure P 1, let the enthalpy W of 
phase I on the curve of equilibrium of phases I and 
II be equal to W*, and let the material be in a meta­
stable state of phase I for the same pressure P 1 

and for W 1 == W* + oW. The volumes V 1 and V* of 
phase I at the points P 1, W1 and P 1, W* are con­
nected by the relation 

V1 = V* +(iWjaW)P,roW = V* +~ (aTjaP)s,dlW(1) 

(the index I denotes phase I and S the entropy). 
The volume of the equilibrium state of the material 
at the same P 1 and for the same increment oW, in 
accord with the Clapeyron- Clausius equation, is 
equal to 

• 1 dT 
Vp=V +--oW 

T dP ' (2) 

where dT/dP is the derivative along the curve of 
phase equilibrium at pressure P 1. 

It follows from (1) and (2) that for an isobaric 
and isenthalpic transition from a metastable state 
to a stable state, the volume change is given by 

v~,-Vi=~[_E'_-(E_) ]11w. 
T dP aP , s,r 

(3) 

The change in volume, upon simultaneous satis­
faction of the condition of constant pressure and 
constant entropy, is made possible by the change 
in the phase of the component. Noting that oW 
== Qoa, where Q is the heat of an equilibrium phase 
transition I -II at pressure P 1 and a is the rela­
tive concentration of phase II, we reach the conclu­
sion that an isenthalpic transition from the meta­
stable state of phase I to a two-phase state in ther-

1 )It is possible that one of the reasons for earthquakes is 
the detonation of rocks[ 2 ' 4 1 that are in a metastable state, as 
the result of their being deformed somehow inside the earth. 
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modynamical equilibrium at constant pressure is 
accompanied by a change in volume, the sign of 
which is identical with the sign of the quantity 

Q[dT I dP- (aT I aP)s, I]. 

For example, upon crystallization from a super­
cooled liquid at W == const, the volume increases if 

(aT I aP)s, Hq > dT I dP. 

The equation of the shock adiabat which starts 
from the point P 1, V1 of the metastable state, and 
corresponds to a thermodynamic-equilibrium final 
state has the form 

Here W 2,p is the enthalpy of the equilibrium state. 
The change in the volume (3) considered above 
corresponds to the transition P 2 == P 1 and W2,p 
== W1, which is described by Eq. (4). The point P 1, 

V2 of the shock adiabat on the PV plane lies to the 
right of P 1, V1 if 

Q[dT I dP- (aT I aP)s, I] > o, (5) 

and to the left if 

Q[dT I dP- (iJT I iJP)s, I] < 0. (6) 

It is now obvious that the shock (detonation) adia­
bat location 2) shown in Fig. 1 corresponds to the 
inequality ( 5). The difference A V between the 
points P 1, V1 and P 1, V2 depends on the degree of 
superheating (supercooling) of the initial phase. 
(The line <I> on Fig. 1 denotes the possible location 
of the boundary of the region of the equilibrium 
state of phase I with the region of the two-phase 
mixture.) Upon satisfaction of the inequality (6), 
the shock adiabat of the metastable phase and the 
point 1 on it are located above the adiabatic transi­
tion into the state of complete thermodynamic 
equilibrium (Fig. 2). In this case, the amplitude of 

2 lNote that (5) and (6) exhibit a natural analogy with the 
criteria that determine the sign of the break of the shock adia­
bat which starts out from a certain thermodynamic equilibrium 
state of phase I, as it crosses the phase equilibrium curve.['] 
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the pressure of any shock wave of finite width (for 
the same reasons as in the case of a stable initial 
state) falls off to zero monotonically. The deriva­
tives in the square brackets of (6) and their differ­
ence can be of any sign. Therefore, the require­
ment of exothermal character of the process of the 
phase transformation (Q < 0) is nowhere sufficient 
or necessary for the existence of a detonation, as 
might appear at first glance (see, for example, 
[2,3] ). 

The adiabats of the stable state and the meta­
stable phase can generally cross at some point P, 
V. At the point of intersection, the pressure, vol­
ume, and enthalpy of these states are equal; conse­
quently, 

Q[dT 1 dP- (aT I aP)s, I] = o. 

For this we must have, at the point P 2 = P on the 
curve of phase equilibrium at a pressure P either 

dT I dP = (aT I aP)s, 1, (7) 

or 
Q(P) = 0 

(8) 

(the critical point, which is possible if the phases 
have the same symmetry, or the point where the 
first-order phase transition degenerates into a 
second-order phase transition; one can show that 
at the critical point the condition (7) is also satis­
fied in addition to (8) ). In the case of (7), Q = 0 
and for P 2 > P, that is, for P 2 > P, only the adiabat 
of the stable state has a meaning. 

As an example, we shall consider in the light of 
the inequalities (5) and (6) the so-called condensa­
tion discontinuities [to,4J which transform 
supersaturated vapor into a two-phase mixture 
(a gas containing a small amount of condensed 
phase). 

On the gas-liquid boundary, far from the criti­
cal point, 

( aT) _ y- 1 vi 
aP s,I- --y-R 

(VI is the molar volume of the vapor on the satura­
tion line, R is the gas constant, and y is the expo­
nent of the Poisson adiabat). Hence 

Q [ dT _ (aT) J = TV1 [ _l_gj_ _ 1] 
dP aP , s, I yE 

(E is the internal energy of the gas). The value of 
[ I Q /hE - 1] for any reasonable value of 'Y far 
from the critical point is positive, and consequently 
the shock adiabat is located above the point 1 
(Fig. 1), in accord with the initial premise of the 
theory of condensation discontinuities. 

2. In analogy to the two regimes of burning 
(slow burning and detonation), there are possible 
two regimes of propagation of the phase transfor­
mation along a substance in the metastable phase. 
In the detonation regime, the shock wave which 
travels along the metastable phase transforms this 
phase from the state 1 (Fig. 1) to another meta­
stable state 3, after which a phase transformation 
takes place, corresponding to the transition from 
point 3 to point 2 along the chord 1-3 in Fig. 1. 
The structure of the wave has a form characteristic 
of a detonation wave ("chemical peak"). Just as in 
combustion in strong shock waves, a supercom­
pressed detonation is possible here, corresponding 
to points located under point 2 on the adiabat of 
equilibrium states. 

A surface phase transition (the phase transition 
on the surface of a metastable phase without the 
appearance of nuclei in its volume, for example 
the surface fusion of a superheated crystal or.the 
solidification of a supercooled liquid) is the analog 
of slow burning. If the superheating (supercooling) 
is sufficient for the realization of the complete 
phase transformation without transfer of heat, [H] 

or if the phase transition on the surface takes 
place so slowly that the thermal conductivity is 
not a limiting stage of the process as a whole (for 
example, in the fusion of materials which possess 
an enormously high viscosity in the liquid states [12 ] ), 

then the speed of motion of the phase boundary is 
determined by the kinetic realignment of the sur­
face and can be constant. In this case, the homo­
geneous transformation is analogous gas-dynamic­
ally to slow burning. In particular, there remains 
in force here the conclusion [4J that discontinuities 
corresponding to points of the adiabat located below 
the point 0 (Fig. 1) are absolutely unstable. In the 
opposite case, when heat transfer is the limiting 
process, the motion of the surface of the phase 
transformation through a metastable phase that has 
a given constant temperature at infinity has a 
variable velocity which is characteristic of non­
stationary thermal conductivity. [l1,13 ] In this case, 
to guarantee a stationary and stable 3 > regime of 
slow transformation, it is necessary to satisfy 
special highly artificial conditions, which are im­
posed on the state of the material in front of the 
surface of phase separation. We shall not consider 

3 )The plane front of the transformation surface, whose vel­
ocity is limited by the thermal conductivity can generally be 
unstable relative to deformation of its surface (see, for ex­
ample, the. so-called dendritic hardening of supercooled met­
als['• ]). 
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this question here in further detail. An analog of 
slow burning under definite conditions is also a 
phase transformation in which appearance of 
nuclei of the new phase occurs not on the surface 
but in the volume. The realization of the stationary 
volume phase transformation is possible in this 
case if the material in front of the phase discon­
tinuity is obtained as a result of the propagation 
through it of some sort of stationary process, for 
example heating or cooling. This process trans­
forms the material to a state corresponding to the 
formation, at a rate sufficiently rapid for the scale 
of the problem, of nuclei of the new phase. An 
example of such a regime of phase transition with 
formation of nuclei in the volume are the condensa­
tion rarefaction shocks discussed in [4]. 

3. Finally, we shall consider discontinuities 
corresponding to the inequality (7). The corre­
sponding location of the shock adiabat relative to 
the initial point 1 is shown in Fig. 2. The straight 
lines P = P 1 and V = V1, and the tangent to the adia­
bat of metastable phase at the point 1, divide the 
shock adiabat into five parts. Two parts-above 
point 2 and between points 2 and 3-refer to shock 
waves which differ qualitatively only in structure; 
in particular, the points of the first parts corre­
spond to strong shock waves and of the second to 
weak ones according to Zel 'dovich. [15] The part 
3-4 does not have physical meaning (imaginary 
flow of matter). The part 4-5 corresponds to the 
slow surface or volume phase transformations, to 
which is applicable everything said above concern­
ing such transformations when inequality (6) is 
satisfied. To the last section of the adiabat corre­
spond absolutely unstable discontinuities, subsonic 
relative to the material in front of the discontinuity 
and supersonic relative to the material behind the 
discontinuity. When shock adiabats of metastable 
and stable phases merge into one adiabat, the sec­
tion 4-5 is compressed to the point 1, and the 
whole region below it reduces to an absolutely un-

stable discontinuity, in agreement with the well 
known premises of the theory of shock waves. 

In conclusion, I express my gratitude to V. L. 
Tal'roze and P. A. Yampol'skil who called my 
attention to a number of problems which became 
the subject of this investigation. 
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