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A dynamical theory is developed which describes the motion of neutrons in a regular crystal 
when the interaction of the neutron with individual nuclei has primarily resonance character. 
A detailed analysis is made of the effect of suppression of inelastic channels and the distri
bution of the intensity of nuclear reactions over the thickness of the crystal. The problem 
is solved with nuclear vibration in the crystal and spin and isotopic incoherence taken into 
account. 

1. INTRODUCTION 

IN considering the scattering of particles by sys
tems consisting of a large number of nuclei, we 
meet the problem that the interaction with individ
ual nuclei itself begins to depend critically on the 
nature of the motion of the particle in the interior 
of such a system. Suppose that a monochromatic 
beam of particles is incident on a regular crystal. 
In moving in the interior of the crystal a particle 
actually loses the property of being a free particle 
and becomes a quasiparticle, satisfying the trans
lational symmetry of the scattering system. The 
resulting state can in principle differ markedly 
from a plane wave, no matter how small the inter
action with an individual nucleus. In fact, if the 
end of the wave vector of the particle is close to 
one of the boundaries of the Brillouin zone, the 
state of the particle in the crystal is a superposi
tion of two plane waves with wave vectors differ
ing by a vector of the reciprocal lattice, and with 
almost equal amplitudes. A particle in such a 
state will interact with the nuclei completely dif
ferently from a free particle. In particular the 
inelastic amplitude, (in the resonance case, the 
amplitude for compound state formation) may van
ish or be markedly reduced, and is now simply de
termined by the sum of the amplitudes for each of 
the waves of the resulting coherent superposition.[t] 
This is the kind of situation that seems to occur 
in the scattering of slow neutrons, and conse
quently the neutrons in such a state will move 
through the crystal, being absorbed weakly even 
when there is a strong resonance interaction with 
the individual nuclei. (In the scattering of X rays 
by electrons one has the analogous phenomena of 

"flashing"-the so-called "anomalous transmis
sion" effect. [2]) 

When the wave vector of the particles incident 
on the crystal is close to satisfying the Bragg con
dition, the initial plane wave suffers a strong de
formation within a finite thickness, giving rise to 
the collective state described above. As a result, 
after almost ordinary (or even weaker) absorption 
in the transition layer, the particles will continue 
to propagate through the crystal while suffering 
only relatively weak absorption. 

The present authors developed [tJ a theory for 
describing the similar picture which arises in the 
resonance scattering of 'Y quanta. The treatment 
was based on solving the Maxwell equations with 
the actual values of the currents corresponding to 
individual nuclei. In the case of neutrons the 
theoretical analysis of the effect of suppression of 
inelastic channels has its own basic special fea
tures. These are connected primarily with the 
need to develop a dynamical theory of crystals 
for particles described by the Schroedinger equa
tion. 

The problem involves a general dynamical 
theory, taking into account the resonance charac
ter of the interaction and the presence of an in
tense inelastic channel as well as vibration of the 
nuclei in the crystal. In addition the theory must 
take consistent account of the spin interaction of 
the neutrons with the nuclei and the appearance of 
an additional incoherent scattering channel (the 
so-called "spin incoherence"). The overall prob
lem is to decide whether the spin incoherence 
destroys the effect of suppression of inelastic 
channels. A similar problem obviously exists in 
connection with isotopic incoherence. 
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All of these questions are treated in this paper. 
Particular attention is devoted to analyzing how 
the intensity and the spatial distribution of 
nuclear reactions in the crystal depend on the 
parameters of the problem. 

2. DYNAMICAL THEORY OF NEUTRON 
SCATTERING IN CRYSTALS 

1. Suppose that a neutron moves through an 
arbitrary perfect crystal. We shall assume that 
the neutron energy E is sufficiently small so that 
A. » d ( d is the nuclear size, A. the neutron wave
length) and that only s -scattering occurs from the 
individual nuclei. We also assume that the ampli
tude for elastic scattering by an individual nucleus 
f ( k, k') is small compared to the interatomic 
scattering, independent of the specific character 
of the interaction. 

The Hamiltonian for the interaction of the neu
tron with the crystal obviously splits into a sum 
of terms corresponding to interactions with indi
vidual nuclei : 

m 

We represent the -.It-function of the neutron in the 
form of an expansion in plane waves: 

"IJ'(r) = ~ "IJ'keikr. 
k 

Then we find from the Schroedinger equation for 
the coefficients 'ltk 

(Ek-E)Wk+ ~ 2:llm(k,k')"IJ'k,=0, (2.1) 
rn k' 

where Ek = ko/2M and M is the neutron mass. 
(Throughout, n = 1.) 

The coefficients Vm(k, k') in (2.1) are the 
matrix elements of Vm between plane waves. If 
I fi «a, by a familiar technique the true interac
tion Hamiltonian may be replaced by an effective 
Hamiltonian with smeared-out interaction, for 
which, on the one hand, perturbation theory is 
valid, and on the other hand the corresponding 
matrix elements are uniquely related to the true 
amplitude for elastic scattering f(k, k') (cf., for 
example, [s] ). Then 

llm(k, k') = -2nM-1fm(k, k'). (2.2) 

This treatment actually assumes that all processes 
leading to inelastic scattering out of the beam are 
incoherent and that there are no back reactions. 

A consistent analysis shows that in a rigid 
lattice fm ( k, k' ) should be taken to mean the 
amplitude for elastic scattering by an individual 
nucleus, where its imaginary part is determined 

only by the inelastic part of the cross section. 
Ejection from the beam associated with purely 
elastic scattering is already contained in Eq. (2.1) 
when we take (2.2) into account. Keeping in mind 
the treatment of resonance scattering, we shall 
always assume that the width r 2 corresponding 
to inelastic channels is large compared to the 
elastic width r 1 (in general, O"a » O"s ). We shall 
therefore not distinguish between the amplitude 
appearing in (2.2) and the true amplitude for scat
tering by an individual nucleus. 

In the vibrating lattice the scattering of a neu
tron may be accompanied by the emission or ab
sorption of phonons. These processes lead to in
coherent ejection of particles from the beam, 
which is equivalent to an absorption. It is clear 
that the quantity appearing in (2.2) should be the 
amplitude for true elastic scattering, i.e., the 
amplitude diagonal in the occupation numbers. If 
we remember at the same time that elastic scat
tering corresponds to a long interaction time, it 
is easy to understand that this amplitude should be 
averaged over the equilibrium distribution of the 
phonons. Because of the potential character of 
the interaction of the neutron and the nucleus, the 
amplitude appearing on the right of (2.2) will de
pend only on the difference k - k'. But if the in
teraction has resonance character, the inclusion 
of nuclear vibration causes fm to depend on k 
and k' individually (cf., below, and also [1] ). 

So far we have paid no attention to the neutron 
spin. Actually the function 'lt}t should have a spin 
index, and the quantities Vm (k, k') and fm (k, k') 
are actually operators in spin space. The general 
expression for such an operator has the form (cf., 
for example,C4J) 

Here f+ and r- are the amplitudes for scattering 
of a neutron by an individual nucleus with spin I, 
corresponding to the two total spin values 
J = I ± t/2. 

If the spin of the neutron changes during inter
action with the nucleus, the resultant state is in
coherent with the initial state, and such a process 
must be regarded as inelastic. In the absence of 
nuclear polarization, the true scattering amplitude 
corresponding to the "entrance channel" for which 
interference between the incident and scattered 
waves is typical, is just the first term in (2 .3), 
the coherent part of the amplitude. It is this 
quantity that should appear on the right of (2.2). 

2. In the case of a rigid lattice, near an iso-
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lated resonance level the coherent scattering 
amplitude should have the following form: 

fm(k, k') = -a exp [i(k- k')rm] 

-ft'[2k(E- Eo+ if I 2) ]-1 exp [i(k- k')rm]. (2.4) 

Here a is the coherent amplitude for potential 
scattering, 

(2.5) 

where ?; ( I ) takes the values ( I + 1 )/ ( 2I + 1 ) or 
I/ ( 2I + 1 ) depending on the total angular mom en
tum of the resonance level. 

We particularly emphasize that in the reso
nance term in (2.4) we have the coherent channel 
width q, which is smaller than r 1, while the 
total width now contains, in addition to r 2, the 
width corresponding to the incoherent part of the 
elastic channel: 

(2 .5') 

Now we consider the vibrating lattice and in
troduce explicitly the displacement vector Urn of 
the m -th nucleus relative to its equilibrium posi
tion Rm: rm = Rm + Urn. Keeping in mind our 
previous remarks and using the results of the 
well known paper of Lamb[5J (cf. also[(]), we find 
for the scattering amplitude: 

/m(k, k')=- exp [i(k- k')Rm] {a( (exp [i(k- k') Um]} {n){n)) 

r' ( + 2~ ~ (exp[-ik'um]){n){n8 J(exp[ikUm]){n8 }{n} 
{n•} . 

X [ E -Eo-~ wll(nll•- nll)+~r T)}. (2.6) 
II 

Here {n} is the set of occupation numbers n(3 
characterizing the state of the crystal; Wf3 is the 
frequency of the (3'th normal mode. The vibration 
problem is treated in the harmonic approxima
tion. 1) The angular brackets denote an average 
over the equilibrium phonon distribution. 

Assuming that the crystal is perfectly regular, 
we introduce in place of the index m the unit cell 
number m and the index j for atoms within one 
cell. Then after standard calculations we find 

In the last expression Vj{3 is the polarization vee-

1 >For simplicity we neglect the change in the phonon 
spectrum that results from the change of mass of the nucleus ac
companying absorption of a neutron. 

tor of the j-th atom with mass Mj in the (3'th 
normal mode. 

An important point is that the second term in 
the square brackets in (2.6) also does not depend 
on the number of the unit cell. Its explicit form 
depends to a large extent on the values of the 
parameters of the problem. Thus, if r or 
I E - E0 I are much larger than w 0, Rj ( w 0 is the 
characteristic energy of the phonon spectrum, or 
the temperature, Rj = ko/2Mj) the phonon term in 
the denominator can be neglected, and the ampli
tude for resonance scattering by an individual 
nucleus has the same factor (2.7). But if these 
conditions are violated, the temperature depend
ence of the potential and resonance parts of the 
scattering amplitude are different. In this case it 
is convenient to write the resonance part as an 
integral over the time, as is usually done for the 
cross section. A direct calculation leads to the 
expression 

00 

X~ dtexp{i(E-E0)t- 1/2ft+cpi(k,k',t)}, (2.8) 
0 

<pj(k,k',t)= ~ 2M-~ (kvill)(k'vill•) 
II J WI! 

X [ (Till + 1) ( e-iro~t - 1) + Till ( ei"'pt - 1)] 

( N is the number of unit cells). 
The relations obtained enable us to analyze the 

temperature dependence of the scattering ampli
tude in the general case. We simply note that if 
r or IE - E0 1 « w0,Rj, the amplitude (2.8) ex
hibits a markedly different temperature depend
ence from (2.7) (cf.[t] ): 

ft' 
/mres(k, k') = - 2k (E- Eo+ if /2) 

Xexp[i(k-k')Rm-%(Zi(k)+Zi(k'))]. (2.9) 

If the first resonance level lies sufficiently 
low, the substitution r 1 - y v' E/E0 should be 
made in (2.4) and (2.6). Now the dependence of 
the amplitude on the temperature and the phonon 
spectrum will depend to a large extent on the re
lation between E0 and w0, Rj. Thus, if the in
equality E0 » w0, Rj is not satisfied, this depend
ence will differ from the purely potential case 
(2.8) even for E- 0, when f- const, while for 
the cross section corresponding to the inelastic 
channels the "1/v law" is valid, i.e., the behavior 
of the elastic and inelastic scattering cross sec-
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tions is the same as for the nonresonant case. 
3. Keeping the above results in mind, we re

write the general expression for the scattering 
amplitude by an individual nucleus in the form 

/m(k, k') = exp[i(k- k') (Rm + p_;)}/j(k, k') (2.10) 

(Pj is the position of the j-th atom in the unit 
cell). In the second term of Eq. (2.2) we sum 
over m. Then, using (2.3), we find 

(:: -1) qrk- ~g(k, k + K) qrk+K = 0. (2.11) 

Here 

4n "" g(k, kt) = - 2- Li exp [i(k- kt) Pi1/i(k, kt); 
X Vo j 

(2 .12) 

K is 27T times a vector of the reciprocal lattice; 
v0 is the volume of the unit cell; K = -v' 2ME. 

In writing (2.10) and (2.12) it was assumed that 
all the nuclei in the crystal are monoisotopic. If 
this is not the case we must again take only the 
coherent part of the amplitude, which in this case 
corresponds to simply making the substitution 

li-+h (2 .13) 

where the bar above denotes an isotopic average 
over the nuclei at the j-th site in the unit cell. 

We now turn to the system of equations (2.11) 
and consider the case where k = k0, so that for 
one of the diffracted waves the wave vector k 1 

= ko + K has a value close to that for the exact 
Bragg condition ki = kij. Then, assuming that the 
interaction with an individual nucleus is suffi
ciently small, we can, as usual, separate out of 
the system (2.11) two equations, which are the 
same for the two values of the neutron polariza
tion: 

{k02jx2 -1) 'Yk, = goo'Yk, + got'l'k,, 

(kt2/X2 -1) 'Yk, = gto'l'k, + gu'Yk,, 

where ga/3 = g ( ka, kf3 ) . 

(2.14) 

The system (2.14) is similar to the system of 
equations considered in [1] for the case of scatter
ing of 'Y quanta (and to the system of equations in 
the dynamical theory of x rays). Thus, referring 
the reader to [t] for details, we immediately give 
the final formulas. 

Considering a crystal in the form of a flat plate 
in the Laue case (diffracted beam passes through 
the crystal), we have for the wave function of a 
neutron of arbitrary polarization in the crystal: 

1 { ( ixe<1> ) 
'l'o(Y) = 2(eC2J- eCil) (2eC2l- goo) exp '---:;- y 

( ixe<2> )} - (2e<1l- goo) exp Vo y , 

pg10 { ( ixe<1l ) ( ixeC2l )} 
'l't(y) =- 2(e<2J- e<IJ) exp Vo y - exp Vo Y, . 

(2 .15) 
Here y = n · r; n is the interior normal to the 
crystal surface; 

e<1• 2l = 1/4(goo + pgu- pa) ± 114{ (goo+ Pgu- pa)2 

+4P(gooa-.:\)}''•, l1=goog11 -gotg10• (2.16) 

The angle characterizing the deviation from the 
Bragg conditions is 

(2 .17) 

.Po is the value of the wave function at the en
trance surface of the crystal; 

"' p = '\'0 I '\'1; '\'0, I = cos eo, I, cos eo, I = DXo, !, 

Xt = xo + Kt. 

Expression (2.15) along with (2.2) and the ex
plicit form for the scattering amplitude (2.10), 
(2.6)-(2.9) and (2.13) completely solves the dy
namical problem for neutrons in an ideal crystal. 

3. EFFECT OF SUPPRESSION OF INELASTIC 
CHANNELS. ANOMALOUS TRANSMISSION 
OF NEUTRONS 

1. Let us examine how the yield of a nuclear 
reaction varies over the depth of a crystal when 
we have the state described in (2.15). We intro
duce a reaction cross section that varies over the 
thickness of the crystal, taking account of the true 
value of the neutron wave function near the nu
cleus and measured relative to the flux density of 
incident particles at the front surface of the 
crystal. Let us assume that the nuclear reaction 
has a purely resonance character. Assuming that 
the energy of the secondary particles is large 
compared to the neutron energy and the charac
teristic photon energy, we have 

da (Ym.i) = ~ I 'Yo (Ymi) /m/ (xo {n}; q {n•}) 
{n•} 

(3.1) 

where Ymj = n · Rmj. This expression contains the 
reaction amplitude fmj• corresponding to the 
emission of a secondary particle with momentum 
q with simultaneous transition of the phonon sys
tem from state {n} to state {ns}. 

If the formation of the compound nucleus is 
determined essentially by one resonance level, 
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r T ., 
/m/(x{n}; q{n"})=-( lxq2 )' 2} (exp[-iqumiD{n"}{nll} 

{nll} 

X [E -E0 - _2} ffi,g (n,gP-n,g) + i; li. 
,g 

(3.2) 

We substitute (3.2) in (3.1) and carry out explicitly 
the summation over {nS}, taking account of the 
obvious relation 

Going over to an integral representation for the 
cross section (3.2) and performing the trivial 
integration over drlq, we get 

~ :rtf/f2 r [. r J a (Ymi) = ~ J dt exp l (E- E 0) t- yl t I 
-oo 

+ \{J'I•exp [-iXIllmj (t)j) 

X ('Yo exp [ixumil + 'YI exp [ixiUmj])} 

( p is the equilibrium density matrix of the 
crystal). 

(3.3) 

(3.4) 

Using standard methods for calculating such 
correlation functions, we find for (3.4) (cf. the 
notation in (2.7) and (2.8)), 

Fmj(X, XI, t) = l'¥o(Ymi)l2 exp [cpj(X, x, t)] 

+I WI (Ymi)l 2 exp [cpj (xi, XI, t)] + 2Re ['P'o (Ymi) wi· (Ymi)l 

(3.5) 

This expression becomes considerably simpler in 
the limiting cases. When r or IE- Eol »wo, 
Rj, it reduces to 

F m/ = I'P'o (Ymi) + '¥I(Ymi)J2- 2Re ['P'o (Ymi) 'YI• (Ymi)l 

(3.6) 

In the opposite limiting case, corresponding to a 
narrow resonance, 

F m/' =I 'Yo (Ymi) exp [- zj (x)J2] 

+ 'P'I(Ymi)exp [-Zi(xi)/2JI2. (3.7) 

If the neutron energy lies considerably below 
the first resonance level, we have for the reaction 
cross section (3.3) 

(3.8) 

where a2 is the reaction cross section at an 
isolated nucleus ( a2 ~ K - 1 ). 

The expressions (3.3), (3.5)-(3.8), together 
with (2.15) enable us to give an exhaustive analy
sis of the variation over the thickness of the 
crystal of the intensity of production of secondary 
particles. On the other hand, knowing (2.15), we 
can find the flux of primary particles at each 
point of the crystal. 

2. Let us begin the analysis with the case of a 
rigid lattice. For a monatomic crystal with arbi
trary symmetry, in accordance with (2.12), (2.10) 
and (2/4), for an arbitrary ratio of Im ga{3 and 
Re ga{3, we have 

goo= g11 =go! = g10; ~ = 0. (3.9) 

If we substitute this result in (2.16) it is easy to 
see that when the Bragg condition is exactly 
satisfied, i.e., when a = 0, one of the roots 
( E(1)) is strictly zero, while the other is equal 
to Y2 g00 ( 1 + {3 ). Let us consider the reaction 
cross section under these conditions, remember
ing that in a rigid lattice 

(3.10) 

Near the entrance surface, where the condition 

xy(i + J3) Imgoo/2vo<1, 

is satisfied, '111 is small compared to >V0; the 
interaction with the nuclei, and consequently the 
yield of secondary particles behaves as usual. But 
as '111 increases the situation changes drastically. 
As '11 0 drops a finite '11 1 appears, and on reflec
tion from any crystal plane '11 1 (Ymj) has the op
posite sign from '11 0 ( Ymj ) . This leads to a much 
more marked decrease in the cross section for 
inelastic processes compared to the usual case 
which results from a drop in intensity of the 
primary beam. Finally, when 

(3.11) 

'11 0 and '111 become equal in absolute value, after 
which (as is evident from (3.10)) compound nu
cleus formation ceases, and the inelastic channels 
are completely suppressed. Both waves retain 
a finite intensity and so in addition to the suppres
sion of the inelastic channels there is an ano
malous transmission of the neutrons. 

Let a « I g00 l but still have a finite value. We 
use the appropriate expansion for E(1•2 l (cf. Eq. 
(4.8) in [1]) in formula (2.15) and compute (3.10). 
Substituting this result in (3.3) (or (3.7)), we find 
for the nuclear reaction cross section, at dis
tances where (3.11) is valid, 
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4nvo(1 + ~) 3 cr/(E) 
Yo= ---. 

~3 (v0x3)x at(E) 
(3.12) 

Here ai(E), a 2(E) and at(E) are, respectively, 
the coherent scattering cross section, the reac
tion cross section and the total cross section for 
interaction with an isolated nucleus. In the case 
of pure resonance interaction, 

cr/(E) r{ I"+ 1/2 r1 
crt(E) =--r= 21+1 r 

(where I* is the spin of the compound nucleus). 
From (2.12) it immediately follows that 

I 12 _ 4n: I 
goo --2 -4 cr1 (E). 

VoX 

It is interesting that for small a the reaction 
cross section (3.11) as a function of neutron en
ergy actually loses its resonance character. 
Then a yield from the nuclear reaction, though 
small, will be observed at thicknesses which are 
not usable for neutrons under ordinary conditions. 
We note that in the Bragg case when a == 0, and 
(3.9) is valid, the second root E(2) == 1/2goo(1- 1131). 
Thus, in the so-called symmetric case 1131 == 1 
the root E(2l also goes to zero, and in the reflec
tion the inelastic channels are suppressed over 
the whole volume of the crystal. 

So far we have considered crystals with one 
atom per unit cell. If we go over to a polyatomic 
lattice the picture changes. Then, as we see from 
(2.12), in general 

,~ = googH - go1g10 =I= 0 

and consequently neither of the roots (2.16) (or 
their imaginary parts) vanishes for any value of 
a, so the effect of suppression of inelastic 
channels either disappears or is significantly 
reduced. 

But in a whole variety of cases of experimental 
interest the effect will persist even in crystals 
with several atoms in the unit cell. Primarily 
this applies to the case where for a given neutron 
energy the amplitude for scattering by one of the 
nuclei in the unit cell, fj, is large compared to 
the scattering amplitudes from the other nuclei. 
Then, in accordance with (2.12), under the condi
tion t::.. == 0 the effect of suppression of inelastic 
channels is realized fully. 

It is interesting that the effect is in general 
destroyed in crystals with two identical atoms in 
the unit cell. But if the vector p 2 can be multi
plied by such an integer as to make its projection 

on the basis vectors coincide with one of the nodes 
of the other sublattice, or if a family of crystal 
planes can be chosen so that K 1 1 p 2, then (3.9) 
will again be satisfied and the problem becomes 
equivalent to the monatomic case. This applies 
both to crystals with two identical atoms or with 
two different atoms in the unit cell. 

3. Let us consider the vibrating lattice. We 
restrict our treatment to the case of one atom 
per unit cell. If there were a nucleus with such 
narrow resonance levels that r « w0, Rj, then 
for neutrons with energies near to resonance, 
according to (2.12), (2.10) and (2.9), the relation 
t::.. == 0 would be satisfied at arbitrary values of 
the temperature. Then, using (3.3), (3.7) and 
(2.15) it is easy to see that at thicknesses satis
fying the inequality (3.11), when a == 0 the in
elastic channels are completely suppressed, al
though a neutron current of finite intensity pro
ceeds through the crystal. This is connected with 
the vanishing in a crystal of arbitrary symmetry 
of the amplitude for formation of the compound 
nucleus, which now depends essentially on the 
temperature. The resulting picture is similar to 
that in the resonance scattering of y rays by 
Mossbauer nuclei. We shall not discuss this case 
particularly, since it was treated in detail in [1]. 

But the existence of such narrow levels is not 
typical for neutrons. As a rule we have the op
posite limiting case or, at least, something inter
mediate. Keeping this in mind, we shall give in 
detail the case where r or I E - E0 I » w0, Rj 
for resonance scattering, or the equivalent case 
of scattering in a region where the 1/v law is 
valid. 

We shall write the basic realtions between the 
parameters characteristic for this case (cf. (3.9)): 

(3.9') 

It should be pointed out immediately that the ef
fect of complete suppression of the inelastic 
channels is now absent. But for the minimal 
values of K1 in most cases Z ( K 1 ) « 1; this 
causes the effect of suppression to be very 
marked. 

Let us first consider small deviations from the 
Bragg condition, a « I g00 I . In accordance with 
our remarks we shall also suppose that t::.. « g5o· 
Then for E(1•2l we can use formulas (4.2) from[1J. 
It is then not difficult to verify by direct test 
using (2.15) that at a thickness y, satisfying 
(3.11), the first term in (3.6) is quadratic in t::.. 
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and a. So, keeping only the second term, we find 
for the reaction cross section (3.3), 

_ 2fl2 ( [ -Z (K1) ]) 
a(y)=a2(E) (1 +fl) 2 1-exp 2 <P(y), (3.12') 

<P (y) = exp [- a2 ( JL)- (1-e-z (K,J) ( L)] , 
Yo Y1 

(1 + ~) V0 

Y1 = ~roat (E) · (3.13) 

The reaction cross section now depends on 
temperature, and it is interesting that with in
creasing T the cross section ff always increases. 
Since Z ( K1 ) tends to a finite limit (because of 
zero point vibrations) as T- 0, there will be a 
certain detuning of the effect of suppression of 
inelastic channels at any temperature. 

Under these same assumptions we determine 
from (2.15) the intensity of the primary flux of 
neutrons: 

lo (y) ( ~ )2 [ ~ 1 
J (0) = 1 + ~ 1- 4a (1 + ~)2 Re goo 

- 2 (f- ~) (1- e-Z (K,l)J $ (y) 
(1 + ~)2 . 

Similarly for the diffracted flux, 

Jl (y) ( ~ ')2 [ ~ (1- ~) l 
J (O) = 1 + ~ 1 - 2a (1 + ~)2 Re goo 

+ (1 ~ ~)2 (1- e-Z (K,J) J !D (y). 

When a = 0 the neutron intensity drops ex
ponentially with effective length l at a rate 
~ 1/Z times faster than when one is far from the 
Bragg condition. If T 3:, Wf3, then l ~ 1/T. For 
a >" 0 there is an additional damping, independent 
of the temperature and the phonon spectrum. The 
corresponding effective length l 0 = y0/ a 2 (cf. 
(3.13)) has an extremely remarkable dependence 
on neutron energy. In fact, for resonance interac
tion 10 ~ 1/E2, while far from resonance, when 
a2 » a1, l ~ 1/E3/2. 

It should be noted particularly that the intensity 
of the transmitted neutron current will show an 
asymmetry in a, which can change sign in the 
vicinity of resonance as the neutron energy changes 
(because of the term Re g001). In the diffracted 
flux this asymmetry is reduced, and is altogether 
absent for {3 = 1. 

The realization of the effects treated here re
quires a relatively high degree of collimation 
~® and monochromatization ~E/E of the neu
tron beam. The presence of strong interaction at 
resonance lowers these requirements as com-

pared with the usual potential interaction. Let us 
consider the example of Gd157 , having a reso
nance at E0 = 0.030 eV, with the following reso
nance parameters: r 2 = 100 mV, r 1 = 0.65 mV, 
I= 7/2. As we see from formulas (3.12), (3.13), 
on the scale determined by a the characteristic 
angle is determined by a 0 = V y0/y. Then, for 
~® and ~E/E, from (2.17) we have 

X !1E X A 
b.E> = 'ao, - = ao E>a= x, K. 

2KsinE> 8 E KcosE>8 ' 

If we set v0 = 3 x 10-23 cm3, we will have for y0 

the value 2 x 10- 13 em, and consequently, at a 
thickness y = 10- 3 em (very much larger than the 
absorption length) ~® ~ 3" and ~E/E ~ 10-4• 

Of particular interest from the experimental 
point of view is the analysis of the behavior of the 
effect over a relatively wide range of variation 
of the parameter a/ I g00 I, especially the case 

I Im gooi</Re goo/. (3.14) 

We note that if we exclude the immediate neigh
borhood of the resonance, this inequality is 
usually well satisfied for neutrons. 

We give the general expressions for >¥0 and >¥ 1 

(2.15), corresponding to the case of (3.14): 

'l'o(Y) = ~{ exp[ ix;:l)·y J + exp[ ix~:2) y]} 

~ { r ixe(!) J [ ixe<2> J} +-2 expl--y -exp --y , 
s 'Yo 'Yo 

~g101 { [ ixe<1> J [ ixe<2> J} '¥1(y) = - 8 - exp ~y - exp Voy , 

e<1•2> = 1f4(2go01 -~ + s)+ 1/4i{(1 +~)goo" 

+ s-1 [~goo"(1- ~)+ 2~(go/ g10" +go/' g101
)]. (3.15) 

In a lattice with one or two atoms per unit cell, 
in the last case, if the reflection is chosen so 
that exp ( iK1 · p 2) = 1, we have 

II 1 ~ E goo =-4-LJati( ), 
XVo j 

I I 1 ~ { [4 I E 1,, [ - zj (K1) J} 
go! = g!o = x2vo ~ + :rtcr!i ( ) 'exp 2 ' 

1 

II II 
1 ~ { (E) [ -:j(Ki) ]}. (3.16) go! = g!D = -4- LJ ati exp 

XVo j 

From (3.15) it follows that the coefficient of 
the diffracted wave is symmetric around a = 0, 
whereas in the transmitted wave the coefficient 
is asymmetric. But the actual asymmetry depends 
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rather on how strongly the two roots in (3.15) 
differ, and on the thickness of the crystal. We 
note that the minimal value again lies at a = 0; 
this should also result in some asymmetry in the 
diffracted wave. If for simplicity we take {3 = 1, 
then from (3.15) it follows immediately that to 
the left of a = 0 there is a range of angles where 
the intensity of the transmitted beam of neutrons 
will be lower than the intensity far from the 
region where the Bragg condition is satisfied, and 
to the right a range of angles where the intensity 
will be higher. Such behavior will show up the 
more clearly the stronger the absorption within 
the thickness of the crystal. 

4. So far, unfortunately, there are no experi
ments on resonance scattering of neutrons in 
perfect crystals. But recently there have been 
interesting reports [S, 7] which give results of 
investigations of dynamical effects appearing in 
the potential scattering of neutrons in such 
crystals as InSb, Ge, Si. Characteristic of all 
cases is that the inequality (3.14) is satisfied, so 
that for comparison we may use the results in the 
form of (3.15) (the intensities of the transmitted 
and diffracted beams of neutrons are simply pro
portional, respectively, to l>~~0(l)i2 and I>~~ 1 (Z)i2). 
And actually the observed appearance of angular 
asymmetry in the intensity of transmitted neu
trons for the case of lnSb (sizable absorption) 
and its practical absence in the case of Ge (weak 
absorption within the crystal for the thickness 
used in the experiment) agrees qualitatively with 
the results presented above. The observed [7] 

oscillation of neutron intensity with thickness in 
a very weakly absorbing crystal of Si directly 
follows from (3.15) if we take account of the dif
ference between Re E(1) and Re E<2l. It is inter
esting that the period of oscillation must vary 
with the temperature (cf. (3.15)). 

As for the change in intensity of inelastic 
processes in a crystal, the effect was first seen 
qualitatively by Knowles, [s] who determined the 
yield of the ( n, 'Y) reaction from scattering of 
neutrons by a single crystal. 

The paucity of experimental results makes 
comparison with theory difficult. This is true in 
particular for the temperature dependence, which 
actually first manifested itself naturally in the 
dynamical case. But from the point of view of the 
dependence on nuclear vibration, the dynamical 
problem for neutrons undergoing resonance 
scattering by nuclei with a wide level or far from 
resonance is similar to the dynamical theory of 
x rays. On the other hand, for x rays the temper
ature dependence of the anomalous transmission 

was measured recently, and it was found that (in 
our notation)[D,toJ 

lm go1/ Im goo~ exp {-Z(K1) /2). 

It is easy to see that this result coincides pre
cisely with (3.13) or (3.20), and also with the 
results appearing in [tJ. 

4. THE ROLE OF SPIN AND ISOTOPIC 
INCOHERENCE 

At first glance it might seem that the presence 
of the incoherent spin scattering should lead to 
spoiling of the effect of suppression of inelastic 
channels. But the results of the preceding section 
have shown that in any case, in a rigid lattice for 
a = 0 the effect appears at full value. It is of in
terest to give at least a brief analysis of the re
sulting situation. To be definite we restrict our 
discussion to the case of pure resonance interac
tion. 

The presence of spin scattering is equivalent 
to the appearance of an additional inelastic 
channel with the width (2.5') and the correspond
ing "reaction" cross section: 

, n r!'rt'' 
cr1 = k2 (E- Eo) 2 + r 2/4 

Representing the scattering amplitude in the form 
(2.4) or (2.6), we naturally included this channel. 
Actually the optical theorem in this case has the 
form 

Im I = 4: (crt' + crt''.+ cr2) 

(the elastic width always appears as q (2.5)). 
The change in the number of inelastic channels 

automatically changes the behavior of the w func
tion in the transition layer to some extent, but the 
physical picture as a whole does not change, nor 
does the occurrence of a paired state (cf. the 
Introduction). In a rigid lattice, when the Bragg 
condition is exactly satisfied the w function has 
nodes at the positions of the nuclei and conse
quently any interaction with the nuclei, coherent 
or incoherent, vanishes. Thus such a state is 
undamped and actually insensitive to the presence 
of spin incoherence. 

But the spin incoherence does affect the damp
ing of the intensity when we deviate from the 
Bragg condition and when we include vibrations 
of the lattice (and also, naturally, when the colli
mation conditions are made poorer). (In accord
ance with (3.13), Yo ~ q and not r 1 ). 

A similar situation occurs when there is iso
topic incoherence. In the preceding section some 
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of the results given actually were for monatomic 
crystals. In the general case, remembering (2.13), 
we must make the substitutions 

( 4.1) 

in the appropriate formulas. 
It is easy to see that the coherent scattering 

amplitude, if determined in accordance with (2.13), 
takes into account completely the new inelastic 
channel coming from the isotopic incoherent 
scattering. Just as for the case of spin incoher
ence, this channel does not prevent the appearance 
of an undamped state, but it may make more dif
ficult the achievement of good collimation and 
markedly affect the damping when there is a devi
ation from the Bragg condition. Thus, if the 
scattering of one of the isotopes predominates, 
Yo is proportional to the concentration of that 
isotope, as is easily seen from (3.13) and (4.1). 

We note in conclusion that impurity atoms 
located at the lattice sites and not distorting the 
lattice, for a = 0 have practically no adverse ef-

feet on the suppression of the inelastic channels 
in the rigid lattice. 
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