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The mass and width of the K* meson are calculated by the Balazs method. The solution de
pends on the following parameters; the slope e: of the Regge trajectory of the K* meson, the 
reference point s 0, the function R( s) which describes the contribution from inelastic pro
cesses, and the point td which divides the physical energy region into a part in which the 
contribution from inelastic processes is small ( R( s) ~ 1) and another in which it is appre
ciable (R(s) » 1 ). The value of the p meson mass, tr, and of the width r{ are taken from 
experiment. The following solutions have been obtained for various values of the parameters 
e:, s 0, tct. and R( s ): (1) MK* = 832 MeV and rK* = 82.5 MeV (the experimental values are 
888 and 50 MeV respectively); (2) MK* = 815 MeV and rK* = 51.4 MeV. 

1. INTRODUCTION 

THE bootstrap method proposed by Chew and 
Frautschi about four years ago [l] is by now rather 
widely known. Its main content, its positive fea
tures, and disadvantages have been presented in 
the review paper by Shirkov [2]. The bootstrap 
method has been used to describe almost all the 
meson and baryon resonances known to date. 

In the present paper the bootstrap method is 
used to find the parameters of the K* resonance 
(T = Y2; J = 1; the mass MK* = 888 MeV, the 
width rU~ =50 MeV). This question has already 
been considered in a number of papers [3 -s]. The 
paper by Capps [3] considered a three-channel 
problem ( 11"K, 7rTj, TjK). The author failed to obtain 
good agreement with the experimental data, par
ticularly as regards the width of the resonance. 
In his opinion it is possible to improve the boot
strap method by using a Regge representation for 
the asymptotic behavior of the amplitude. The 
papers by Diu et al. [4] discussed both one-channel 
and two-channel problems. Neither of these cases 
gave a convincing proof of the existence of a boot
strap solution. In this discussion two important 
points came up (a) the results depended on the 
cut-off and consequently the bootstrap solution 
was sensitive to the assumption about the asym
ptotic behavior of the solution; (b) in the two
channel approach there was a problem about the 
stability of the resulting solutions. Fulco et al. [ 5] 

considered the effect of the nearby inelastic chan
nels on the width of the resonance. These authors 
obtained interesting results which indicated a nar-

rowing of the resonance by the presence of nearby 
channels. However, their results also depend sub
stantially on the cut-off. In the opinion of these 
authors an improvement of the model would consist 
of a more accurate investigation of the asymptotic 
behavior of the amplitudes and allowance for in
elastic processes. 

In the present paper the parameters of the K* 
resonance are determined by the method of 
Balazs [s] in which the asymptotic behavior of the 
amplitudes is described by Regge poles in the 
crossed channels, and the effect of inelastic pro
cesses is included by introducing a certain func
tion in the two-channel unitarity condition. 

Besides obtaining solutions which are close to 
the experimental data the paper also discusses the 
sensitivity of these solutions to the choice of pa
rameters. It turns out in particular that the solu
tions found depend substantially on the choice of 
the reference point. Similar results were also 
found in other papers (see for example [7J). 

2. KINEMATICS, STATEMENT OF THE PROB
LEM 

The amplitude of the scattering process 

n(q1) + K(pi)-+ n(qz) + K(pz) 

is considered as a function of the three variables 
s, u, and t. We use the following notation: M and 
Jl. are the masses of the K and 1r mesons, ks and 
zs are the momentum and the cosine of the scat
tering angle in the c.m.s. of the s channel. In the 
crossed u channel ( 1r' + K- 1r' + K) s and u 
change places. The connection between the am-
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FIG. 1. Location of the cuts in the partial-wave amplitude 
of the scattering process 11K -+ 11K in the s plane. 

plitudes for 7l'K, 7l''K scattering and for 1!'1!' - KK 
is given by the rules 

I' I' 

It follows from the Mandelstam representation 
that the partial amplitudes in the s channel have 
cuts in the s plane, as shown in Fig. 1. In the 
Balazs method these three cuts are approximated 
by two cuts along the real axis: (1) the right 
(physical ) cut from M + J.l. to + oo; the left ( un
physical ) cut from - oo to M2 - JJ.2• The problem 
is to find the amplitude AJ~f2 from which the 
parameters of the K* resonance can be determined. 
The weight on the left-hand cut is at low-energies 
given by the diagrams shown in Fig. 2; at high en
ergies it is determined by the Regge pole in the s 
channel. The position of the p meson and the cou
pling constants gp7T7T and gpKK are known param
eters. The mass and width of the K* meson are 
determined from the bootstrap equations. 

3. DERIVATION OF THE BOOTSTRAP EQUA
TIONS 

We seek the amplitude Af/2 ( s) in the form 

H 11 ) 1 A 11 N(s) t"(S =----- t 12(S)=---
s-(M+!L)2 D(s) ' 

(1) 

where N( s) has only a left-hand cut and D( s) 
only a right-hand cut. We write the unitarity con
dition for the function Hi/2 ( s ) ; 

Im [H1''•(s)-1] =- (k./s'l•)[s- (M + !LP]R(s), (2) 

where R( s ) is the ratio of total to elastic cross 
section. The function R( s) allows for the contri
bution from inelastic processes. From (1) we find 
1m N ( s) (on the left-hand cut) and 1m D( s) (on 

p 

b 

FIG. 2. Diagrams contributing to the low-energy potentials 
on the left-hand cut. 

the right-hand cut), which allows us to write down 
equations for N ( s ) and D( s ) : 

M2-J.l.2 

N(s)=_!_ (' ds'D(s')ImH<"(s'), 
n J s'-s 

-oo 

00 

s-so (' 
D(s)=1--- J 

n (M+t.tJ' 

d I ks' s-
l'i' 

N (s')R (s')[s'- (M + !1)2] 
X (s'-s)(s'-s0) 

(3) 

The dispersion relation for D( s) is written with 
one subtraction at the reference point s 0: D( s 0 ) 

= 1. The contribution from the left-hand cut is 
written as a sum of two pole terms: 

~ ai 
N(s)= L! --, 

i=l, 2 S- Si 
(4) 

where ai are the residues at suitably chosen 
poles. The positions of the poles are chosen by 
the method given in the paper by Balazs [s]; they 
are s 1 = -57 and s2 = 10.5 (if the cut in the t 
channel is allowed for) or s 1 = -57 and s2 = 4.5 
(if the cut of the t channel is neglected). The 
second pair of poles correspond to the case in 
which the influence of p-meson forces is prac
tically zero. 

The parameters a1 and a2 are determined by 
comparing the amplitude (1) and its first deriva
tive cmf2( s )/8s with the calculated function Hi/2"( s) 
and its first derivative, respectively, at a certain 
comparison point scamp· We choose scamp= so 
to reduce the number of parameters. 

We next calculate the function H:/2(s ). At a 
fixed value of s we write the following partial
wave dispersion relation: 

1 CID I 

At'1•(s) = --{ (' At'f•(s t')Q1 ( 1 + _t_) dt' 
2nk 2 J ' 2k 2 

8 4J.L2 8 

-\ Au'l•(s, u')Qt ( -1- u'- (MZ-; 112) 2/s) du' }. 
(M+IlJ' 2ks (5) 
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where A~2 ( s, u') and A~12 ( s, t') are the imagi
nary parts of the amplitudes in the u and t chan
nels, which can be expanded, as usually in physical 
channels, in powers of the cosines of the angles 
zu and zt: 

2 ( M2 + 1-12) - u - s . s + p2 + q2 
Zu = 1 + Zt = 

2k,.2 ' 2pq 

Here p and q are the momenta of the k and 1r 

mesons in the t channel. One limitation on the 
choice of the comparison point scomp = s 0 results 
from a consideration of the region of analyticity of 
Atj2 and Af12• The comparison point must be 
chosen at a value of s for which their expansions 
are valid. 

fu Eq. (5) each integral consists of two parts, 
a low -energy part A~2< H) ( s ) and a high -energy 

part AY2<H>( s ). It is assumed that the dominant 
part of the low-energy contribution in the u chan
nel comes from the diagram giving an exchange of 
K* mesons (Fig. 2a) and therefore the expansion of 
At/2( s, u') contains only one term with l = 1. The 
partial wave Af~ ( u') is approximated by a Breit
Wigner formula. fu the approximation of zero 
width this becomes 

A similar expression can be obtained for A~2 ( s, u ). 
The cuts of the function P 0! ( - z ) and P 0! ( z ) in 
the u and t channels are known. 

fuserting in (5) the asymptotic expression for 
the imaginary parts of A~2 ( s, t) and A~2 ( s, u) 
and of the functions Q1 ( zu) and Ql ( zt) we find 

A,'/,(Hl(s) = _ 1 [2a(s) + 1] ~ (s) C1 (a) ( ~)a-1 (g) 
3 a -1 2ks2 

where td is the lower limit in both integrals in (5), 
which is determined from two considerations: 
(a) first, this limit must be far enough to relate to 
the asymptotic behavior of the amplitude; (b) sec
ond, it cannot lie closer than the singularities of 
the functions P 0! ( zt) and P 0! ( - zu). These re
quirements are satisfied if t ~ 130. fu our work 
we took td = 130. 

We assume that 0 

c,(a) [2a(s) + 1J~(s) (2V)'-a ~ const, 

Rea~ 1+e(s-s,), 

where E is the slope of the Regge trajectory. We 
determine the residue {3( s ): 

(6) The expression for A¥2< H) ( s ) now takes the form 

where ur is the position of the K* resonance and 
r}/2 is related to the width of the K* resonance 
by 

fK•''' = k, [s,.- (M + !-1)2] f/i•. 
s, 

The expression for Af~ ( t' ) is found from the 
appropriate diagram (Fig. 2b) by perturbation 
theory: 

A 11I'(t')= 3(pq)nf116(t- t,), (7) 

where rf = % g1r1rpgKKp• and tr = Mb ( Mp is the 
mass of the p meson). Using (6) and (7) we find 
for the low -energy part AY2< L) ( s ) of the ampli
tude (5) the expression 

3r,' ( t, ) r,•;, 
A,'/,(LJ(s)= 4k}(s+p,2+q,2)Q, 1+2ks2 +2ks2 

{ 2ur[2(M2 + 1-12)- u,- s]} 
X Ur- (M + 1-1)2 + (M )2 ,___ Ql 

Ur- - ~t 

The high-energy part AY2{H) ( s) will, by as
sumption, be determined by the K* meson in the 
s channel, i.e., 

A:x'l•(s, t) =- n[~a(s) + 11 ~(s) [Pa(- z)- Pa(z)]. 
2smna(s) 

(8) 

A,'h(H)(s) = r,•;, s- (M + 1-1)2 ta•<•-•rl, (10) 
s,- s 

Hence we find from (1), (4), (5), (8), and (10) 

the following equations for the residues a1 and a2: 

aA/~-~ I = ~ ai {-1-- So- (M + !lP 
OS s=so ._12 So-Si (so-Si) 2 ,_' 

+A,'I•(so) 1 ds' ks'[s'-(M+I-1)2] [O(sa-s) 
Jt ' 1s'(s-s0 ) 2 (s'-s·) 

(M+J!l' r , 

+ R(s)O(s- sa)]}· (11) 

fu Eq. (11) we treat the quantity R( s) as a con
stant and take it out of the integral. An approxi
mate expression for it will be given below. For 
the value of A}/2 ( s 0 ) at the point s 0 = scomp on 
the left we insert the sum of (8) and (10), and in 
place of the derivative 8Alf2(s)/8s/s=so we use 
the derivative of the same sum. The function 
D( s) can now be found by inserting for a1 and a2 

l)It is shown in [8] that this choice ensures a satisfactory 
narrowing of the diffraction peak. 
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FIG. 3. Behavior of ReD(s) and its dependence on the 
parameters S0 = Scomp and s 2 (s2 = 2.5 corresponds to the con
tribution from p-exchange forces). 

from (11) in (3), and the position and width of the 
resonance are then fotmd from the conditions 

The behavior of Re D( s ) near the resonance is 
very well approximated by (see Fig. 3 ): 

s-sr 
ReD(s)~--

so- Sr 

and therefore 
ft'f• ~ (sr- so)N(sr). 

The quantity R( s) is calculated exactly as in 
the paper of Balazs [6] on the assumption that the 
contribution of inelastic processes to 1rK -1rK 
scattering is taken care of by the Pomeranchuk 
pole: 

R 641telns 
(s) ~ ------

O'tot (1 + 1t2/ 4ln2 s) ' 

where atot is the total cross section for the anni
hilation reaction 7r7r - KK. To simplify the calcu
lations this expression is always taken at the point 
s = sd. For the particular values atot = 50 mb 
and e: = %0, we get 

R(s) = 300 8 = 15. 

4. CALCULATION OF THE K* RESONANCE 
PARAMETERS. CONCLUSIONS 

Equations (8), (10), and (11) show that rl, tr, 
E, td, so, and R( s ) are free parameters in our 

Solu
tion 
No. I · I s, I R (s) I fo!r p \ r: 

meson 

1 1/20 1.3 310 30 0.8 
2 1/12 1. 75 300 30 0.8 
3 1/'21) 1.62 350 ~0 10 
4 1/12 1.514 310 30 30 

calculation. In reality none of these quantities can 
take arbitrary values. The width r} and position 
tr of the p-meson resonance must be taken from 
experiment. The slope e: of the Regge trajectory 
must lie between the physically reasonable limits 
Vso < e: < %0, and the quantity R( s ), which depends 
on atot and E, is bounded by the physical limits 
200 e:, and 350 e:, if one assumes that atot lies be
tween 40 and 80 mb. The quantity td is defined 
as the limit above which the contribution from in
elastic processes becomes substantial, and is also 
dependent on the considerations mentioned in the 
explanation of Eq. (9). The position of the chosen 
point s 0 (or the comparison point) is restricted by a 
number of arguments [4•6]: to the left its value is 
limited by the condition for the expansion of the 
functions At{2 ( s, u ) and Af2 ( s, t ) , and to the right 
it cannot lie beyond the threshold for the physical 
process. In our problem we choose it near the end 
of the unphysical cut. 

The self-consistent calculation of the K* pa
rameters consisted in assuming, for given rl, tr. 
E, td, s 0, and R(s ), some input values of the pa
rameters r}l2 in and s~. chosen close to the ex
perimental data. On the basis of these values we 
then calculated the residues a1 and a2 (see 
Eq. (11)) and used these to solve Eq. (12). If the 
resultinf output values of t.he para~eters, r f12 out 
and s~u agreed with rfl2m and s~n. the calcu
lation was finished. Since the calculation was done 
numerically and the output values r }12 out, s~ut 

agreed only approximately with r f 2 in and s~n, 
they were recalculated from the same equations to 
check the convergence of the solution. 

In this manner several solutions were found. 
We show the most interesting cases in the table. 

All the solutions listed in the table took the p 
meson forces into account. Within the range of 
values for the parameters which we considered we 
did not find a single bootstrap solution without a 
contribution from p mesons. To improve the 
agreement of the resulting value of the width 
ru~ with experiment it is necessary either to in
crease the slope of the Regge trajectory (see so
lutions 1 and 2 ) or to decrease the value of s~n. 
It is possible that there are two different com
parison points, or two different slopes for the 

827 
817 
817 
803 

8 out 
r • 
MeV 

832 
815 
816 
803 

r 'f• in 
K• • 
MeV 

82.7 
52.4 
76.2 
61.0 

1 
r '/• out 
K' • 

MeV 

82.5 
51.4 
75.2 
61.0 
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Regge trajectory and two different comparison 
points, which lead to the same solution for sr and 
r~~- It is very important to allow for inelasticity. 
For reasonable agreement with experiment the 
quantity R( s) must be taken between 15 and 25. 
The solution depends strongly on the choice of the 
point s 0 = scomp (see Fig. 3 ). 

In the range - 10 < s 0 < 20, 25 and s 0 < s < 50 
all solutions which were found were unique. 

Hence it is possible to obtain even in the sim
plest single-channel problem, satisfactory agree
ment with experiment, particularly for the width. 
It is known that the inclusion of other channels has 
the effect of reducing the width of the resonanceC5J. 
In the Balazs method the influence of other chan
nels is included through the function R( s ). One 
disadvantage of the method is the dependence of 
the solution on a large number of parameters. As 
a result it produces in addition to the physically in
teresting solutions also others which have no rela
tion to the experimental data. 

In conclusion we express our thanks to M. 

Severyn'skil for helpful discussions and V. Nikitin 
for help with the computer calculations. 
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