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The interaction between a sound wave and the thermal fluctuations of a certain intrinsic 
parameter of the system under consideration is studied. This interaction leads to a re
normalization of the velocity and also to an additional sound absorption. The purpose of the 
research was to elucidate the features of sound propagation near second-order phase transi
tion points. Therefore, the characteristic transition parameter plays the role of the intrinsic 
parameter. It is shown that increase in the fluctuations of the latter near the transition point 
leads to a decrease in the sound velocity and an increase in the absorption coefficient in both 
the asymmetric and symmetric phases. The frequency dependence of the velocity and ab
sorption coefficient is investigated. 

As was discovered in a whole series of experi
ments (see for example [t-4J), the sound absorption 
increases in the vicinity of second-order phase 
transition points. Several researches [S,G] have 
been devoted to the theoretical explanation of this 
"anomaly." These are based on the results of 
Mandel'shtam and Leontovich as applied to the 
problem under discussion. [B] These authors cal
culated the sound absorption associated with the 
relaxation of an internal parameter. In order for 
the relaxation mechanism for sound absorption of 
Mandel'shtam-Leontovich to come into play, it is 
necessary that the equilibrium value of the in
ternal parameter be dependent on the density of 
the substance, or, more exactly, that it change 
during passage of the sound wave. 

When studying the anomaly of absorption near 
a second-order phase transition point, we en
counter still another case. For a number of mate
rials, the symmetry of the more symmetric phase 
is such that there is no linear coupling in them 
between the acoustic deformations and the charac
teristic transition parameter, which plays the role 
of the internal parameter mentioned above.[5J It is 
not possible to explain the experimentally observed 
anomaly of the sound absorption in the symmetric 
phase of such materials within the framework of 
the Mandel'shtam-Leontovich theory. 

We shall consider below, the sound absorption 
brought about by the interaction of the sound wave 
with the thermal fluctuations of the internal 
parameter. We shall be interested only in the ab
sorption anomaly near second -order phase transi-

tion points, although the calculations given below 
are also of interest in the study of other problems, 
for example, the propagation of sound in a liquid. 
As experimental results show, [7] the absorption 
coefficient of acoustic waves at hypersonic fre
quencies is proportional to the square root of the 
frequency in a number of liquids. Such a fre
quency dependence will be observed below for the 
sound absorption coefficient brought about by 
fluctuations of the internal parameter, in the 
region of frequencies which is much higher than 
the reciprocal of the relaxation time. We recall 
that the sound absorption coefficient computed by 
Mandel 'shtam and Leontovich [B] in this region of 
frequencies is independent of the frequency. 

The interaction of the sound wave with fluctua
tions of an internal parameter has already been 
investigated by Pippard, [9] who studied the effect 
on propagation of a sound wave of the fluctuations 
arising from the onset of the superfluid phase in 
normal helium at temperatures close to the transi
tion temperature. Here, however, it was neces
sary to make a number of assumptions of a model 
character, the degree of approximation of which 
is not clear .1) 

While the calculation given below has a general 
character, the nature of the fluctuating internal par
ameter contained in it affects only the form of the 

1 )Ginzburg has repeatedly pointed out the possibility of a 
different type of "pre-transition" effect in the symmetric 
phase, associated with the fluctuations of the characteristic 
parameter (for example, see[10]). 
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equations of motion for this quantity. The equa
tions of motion used below refer to a character
istic transition parameter of the type of the 
a ~ {3 transition in quartz. In the case of transi
tions to the superconducting and superfluid states, 
it would possibly be necessary to take into account 
the quantum -mechanical nature of the character
istic parameter, but this is not done in the present 
work. 

1. The characteristic transition parameter (we 
shall denote it by TJ) is an internal parameter of 
the system, which has the meaning of a certain 
internal deformation. For phase transitions in 
ideal crystals, for example, the transition parame
ter is associated with the relative displacements 
of the sublattices; it corresponds to the Born op
tical deformation. Our first goal is to obtain the 
equations of motion for the acoustic and "internal" 
deformations, associated with a change in T). Here 
it is most convenient to begin with the expression 
for the density of the common potential energy of 
the internal and acoustic deformations. We shall 
use the free energy of the material for the latter. 

In the spirit of the Landau theory, we shall 
assume that, near the transition point, the poten
tial (free) energy of the system per unit volume 
can be represented in the form of the series 

Here v is a small dimensionless parameter char
acterizing the volume of the system, v = I V 
-Vel Ve, Ve being the volume occupied by the 
system at the transition temperature T = ®. In 
the symmetric phase, a > 0, while in the asym
metric phase, a < 0. Therefore a ( 0, ®) = 0. It 
follows from the form of Eq. (1) that we are 
considering only phase transitions of the second 
kind, far from the critical Curie point. 

Expanding u ( TJ, v ) in a series in TJ' = TJ - TJo 
and v' = v - v0 ( TJo and v0 are the equilibrium 
values of 17 and v ) , we get 

u(rj', v') = a(O, T)'Y]'2 + a,'v'11'2 + o (grad 11')2 + 1i2/,v2 

for T > ® and 
(2a) 

(2b) 

for T < ®. Here 116 = -a/{3, v0 = -a\r1J5/A. In ob
taining Eqs. (2) we assumed that av2/{3A « 1; 
usually, this ratio is of the order of 0.1. In the 
expression for the potential energy density, a 
term o (grad 1J' )2 is added. This takes into ac
count in first approximation the correlation be
tween the values of TJ' at the different points. [12] 

In what follows, we shall omit the primes on 17 

and v. In general, the terms a;vTJ2v 2 and 
2a;v1lo1Jv2 in Eqs. (2a) and (2b) should be taken 
into account. However, as additional investigations 
show, account of these terms leads only to insig
nificant corrections to the final results. 

We emphasize that the transition from Eqs. (1), 

which pertain to the spatially homogeneous case, 
to Eqs. (2a) and (2b), in which 17 = 1J ( r, t) and 
v = v ( r, t), is by no means obvious. The latter 
can apply in the best case only to long wave oscil
lations in 17 and v. Therefore, in the expression 

'YJ(r,t)= ~ 'Y](w,k)eikr+iwtdkdw (3) 

we shall carry out the integration only over the 
region k < km (the quantity km is a parameter 
of the theory). Obviously the same applies to the 
function v ( r, t). For fixed km the procedure 
described above for the transition to the spatially 
inhomogeneous case becomes incorrect in the 
immediate vicinity of the transition point.l13J 
Just this circumstance establishes the inapplica
bility of the theory given here in the immediate 
vicinity of the transition point, even when the ex
pansion (1) is valid in this region. 

We first assume that the kinetic energy density 
and the dissipation function are quadratic in the 
corresponding velocities. The set of equations ob
tained under these assumptions has the form 

X~+ UY) -- oV' 2Y) + a/'Y]V = f(r, t), (4a) 

pii - A V' 2v - av'V' 2'Y]2 = 0 ( 4b) 

for T > ®, and 

for T < ®. Everywhere in these equations, terms 
are omitted that are nonlinear in v. We shall 
proceed in similar fashion in what follows. In 
Eqs. (4a) and (5b), we have also omitted the in
ertial terms, thus assuming that the approach of 
the quantity 1J to its equilibrium value has a re
laxational character. Account in these equations 
of terms proportional to 17 presents no difficulty 
but together with this it does not lead to essen
tially new results for the acoustic frequencies 
smaller than ( a/ 1J. )112 and x/ 41J.; (the latter two 
quantities represent respectively the frequency 
and the attenuation coefficient of the optical 
("internal") vibrations). 

By inserting the random forces {3 ( r, t) in the 
right hand sides of (4a) and (5a) we account for 
the fluctuations of TJ. As is seen from (4a), for 
T > ®, the action of the sound wave on the internal 
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deformation, corresponding to the quantity 7), re
duces to a change in the elastic modulus of this 
internal deformation. It is natural that if the fluc
tuations are absent, then such changes in the 
elastic modulus cannot denote any interaction be
tween the acoustic and the internal deformations. 
We note that in our set of equations, we have con
sidered only the friction forces arising in internal 
deformation, and have neglected the viscous 
forces which arise in purely acoustic de forma
tion. For an account of these latter, we would 
need to add to Eqs. (4a) and (5b) terms propor
tional to aV2v/at. Calculations show that the co
efficient of sound attenuation brought about by the 
viscosity (for a purely acoustic deformation) de
pends more strongly on the temperature than the 
coefficient of attenuation associated with the in
ternal deformations. 

2. We now proceed to the solution of the set of 
equations of motion. We first consider the case 
T > e. We express the solution of Eq. (4a) in the 
form of a series, each successive term of which 
contains the parameter v in a higher degree than 
the previous : 7J = 1)0 + 11' + . . . . The function 7)0 

= 1)0 ( r, t) describes the spatially inhomogeneous 
fluctuations of 7), not disturbed by the sound wave. 
By assuming, as usual, that f ( r, t) corresponds 
to jolts uncorrelated in time and space, 

<f(r, t)f(r', t')> =xksT6(t-t'}6(r-r'), (6) 

we find 

1 xksTb ( w' + w") b (k' + k") 
- (2:n:)4 (a+ l)k'2)2 + x2w'2 

(7) 

For 7J' ( r, t ), we have 

1]1 (r, t) = - av' S gt (t- t', r- r') 

X'1]0 (t', r') v(t', r')dt'dr'. (8) 

Here g1 ( t - t', r - r') is the Green's function of 
Eq. (4a) without the terms which contain v. By 
substituting 1)0 + 1)' in place of 7J in Eq. (4b), we 
get 

pii- V2 ( A.v-2a,,'2 S gt (t-t', r- r') 

X 1]0 (t, r) 'l]o (t', r') u (t', r') dt' dr') = 0. (9) 
I 

It is seen from (9) that the problem has been re
duced to the study of sound propagation in a 
medium with random inhomogeneities, the statisti
cal properties of which are known. 

A similar procedure can also lead to a set of 
equations relative to the region T < e. First of 

all, we note that the fourth term on the left hand 
side of (5a) should be put on the right hand side 
and the solution of Eq. (5a) can then be represented 
in the form of a sum 1J = 7)1 + 7)2, of the solution of 
two inhomogeneous equations, on the right sides 
of which are the variables-av7JoV and f ( r, t ), 
respectively. Here the function TJt (r, t), reflects 
the process of relaxation of 7J to the new equili
brium value, which changes with frequency,while 
7)2 ( r, t ) corresponds to the thermal fluctuations 
of 7). In the theory of Mandel'shtam and Leonto
vich, applied to the case of second-order phase 
transitions by Landau and Khalatnikov, the action 
of the sound wave on that degree of freedom, 
which corresponds to the characteristic (internal) 
parameter, is described only by the function 
7)1 ( r, t). We only just now saw that such an effect 
does not always take place, but only in the pres
ence of a linear relation between the deformations 
(in our case, a change in volume) and transition 
parameter. In the symmetric phase, this linear 
relation is often excluded by symmetry consider
ations. Along with this, the quadratic dependence 
of the volume deformation on the characteristic 
parameter is always permitted by the symmetry. 
Account of this quadratic dependence is a funda
mental part of the present research. Here, we 
have essentially considered terms of higher order 
than in the previous researches,[5 •8] but in anum
ber of cases, precisely these terms describe the 
effects of interest in the first nonvanishing ap
proximation. The action of the sound wave on the 
fluctuations of 1J is the concrete mechanism by 
which the quadratic relation mentioned above 
comes into play in the problem considered here. 

Let us return to the set of equations (5a)-(5b). 
In a way completely analogous to what was done 
above, we find that the solution of Eq. (5a) (with 
accuracy to terms of higher order in v) has the 
form 

r1 (r, t) = J] 0(r, t)- av' 

xS ('1Jo+'IJ0 (r',t'))g2(r-r',t-t')u(t',r')dt'dr'. (10) 

Here g2 ( r, t) is the Green's function of Eq. (5a) 
without the terms containing v. The expression 
for (7)0 (w',k')TJ0 (w",k")) forT<@ isob
tained from (7) by replacing a by -2a. Substitut
ing (10) in (5b) and keeping only the terms that 
are linear in v, we find 

pii- V2 ( J...v- 2a,'2 'l]o2 S g2 (r- r', t- t') u (t', r') dt' dr' 

- 2av'2 'l]o S ('I]O(r, t) + 'IJO(r', t')] 

X g2 (r- r', t- t') u (t', r') dt' dr' 



904 A. P. LEVANYUK 

- 2av'2 ~ g2(t- t', r- r') 

x TJo(t, r)TJo(t', r')v(t', r')dt' dr') = 0. (11) 

Equation (11), as also Eq. (9), describes the 
propagation of the sound wave in a medium with 
random inhomogeneities, but in the absence of (9) 
there is in addition a term not connected with the 
fluctuations (third term on the left side). Retaining 
only this term, we obtain the results of Landau 
and Khalatnikov. [SJ 

3. We now turn to the investigation of Eq. (9). 
The first two components on the left side of this 
equation describe the propagation of the initial, 
unrenormalized wave, the third component causes 
in particular, the renormalization of the charac
teristics of the mean wave field. A regular pro
cedure can be developed for such a renormaliza
tion (see, for example, [14] ). However, if we con
sider that the renormalizations change the wave 
vector of the initial wave only slightly, then the 
equation for the mean wave field can be obtained 
by averaging the coefficients of Eq. (9). This 
corresponds to keeping only the terms in the re
normalized series that are quadratic in 1]. It is 
obvious that here we neglect scattering from the 
fluctuations of Tj: in the region T > ®, only 
second-order scattering takes place, as can be 
seen from (9); this gives a contribution -114• 

For a plane monochromatic wave 
v = ve-iwt+iq · r, the averaged Eq. (9) is rewritten 
in the form 

(12) 

2a '2 ~ 
K1 (w, q) = ---f- ~~g1 (T, R) <TJ (t, r) 

0 

X T) (t- T, r- R)) eiw:+iqR dT dR, (13) 

cij = A./p. The dependence of the quantity K1 (w, q) 
on q can be neglected if the acoustic wavelength 
is much greater than the correlation radius of the 
fluctuations of 1], i.e., if a» oq2. Since q ~ 103, 

while 6 - a@d2, where d ~ 10-8 em, the inequality 
under discussion is satisfied for ( T - ® )/® 
» q2d2 - 10- 10 , that is, it is satisfied with ample 
margin in the region of interest to us. Therefore, 

K 1 (w, q) ~ K1 (w, 0) = K(w). 

Further, writing K ( w) = K1 ( w) + iK2 ( w) and 
q = q1 + iq2, we find 

qt=~(1+_!_ Kt(w) ). 
co 2 Co2 

1 w K2(w) 
q2=-----

2 co co2 • 

(14) 

(15) 

Here we have assumed that I K ( w) I « cij. 
We now find the expression for K ( w ). From 

(4a), we get 

( k - 1 1 
g1 00 ' ) - (2n) 4 a+ M 2 + iw:x; 

Also, employing (7), we get the relation 

2av'2 :x;kBI' 
K(w)=-----

p (2:rt) 4 

(16) 

dw" d())' dk6+ ( w' + w" - w) 
X~ (a+M2+iw':x:)[(a+bk2)2+x2(t}"2} (17) 

Integrating (17) over the frequency and the 
angles of the vector k, we find: 

k,. 

av'2 s k 2 dk 
K2(w) = 2n2p kaTUl''f. o (a+ l\k2)[4(a + bk2)2 + :x;2w2]. 

(20) 
The integrals appearing in (19) and (20) have 

been computed only for those regions in which 
the relation 6kk « a or 6kk » ( a 2 + x2w2/ 4 )1/2 
is satisfied. In the first case, we can set 6 = 0 in 
the integrand and multiply it by 47T~/3. In this 
case, we get a relaxational dependence on the fre
quency for the absorption coefficient and the 
sound velocity. There is great interest in the 
second case. We can assume here that the upper 
limit of integration is infinite. As a result, we get 

- av'2r2 kaT [( a2 :x;2w2 )If, a ]If, 
Kt(oo)- 8np<'l:x;w \ 62"+ 4<'12 -6 '(21) 

K2(w) = av'2kBI' { 1_[ (~+x2w2 r +~]1/,- (~)I''} . 
4:np<'lxw 1"2 (12 4<'12 <'I 6 

(22) 
For w T » 1 ( T = x! a is the time for relaxation 
of the nonequilibrium value of 1J to its equilibrium 
value) K 1 ( w) "" K2 ( w ). Taking (14) and (15) into 
account, we can establish the fact that the sound 
velocity in this region increases with frequency 
according to the law 

c = Co- b I 2col'W: (23) 

i.e., it approaches the velocity of sound for a fixed 
value of 1], as of course it should. The absorption 
coefficient in this region is 

q2 = b"J'i;;" I 2co3• 

Here and in Eq. (23), 

b = av'2kaT l8:npb'"ii 

We recall that the absorption coefficient and 

(24) 



SOUND ABSORPTION NEAR SECOND- ORDER PRASE TRANSITION POINTS 905 

the sound velocity calculated according to the 
equations of Mandel'shtam and Leontovich are in
dependent of frequency in this range of frequencies 
with accuracy up to terms of order 1/w2r 2. At 
low frequencies, the absorption coefficient is pro
portional to the square of the frequency and de
pends strongly on the temperature q2 = 1/ ( T 
- ® )3 / 2. The quantity "A - K1 ( 0) represents the 
renormalized compressional modulus, while 
K1 ( 0 ) corresponds to the anomaly of this modulus. 
For a« okiu, the quantity Kt(O),.., (T- ®)-112. 
As was noted above, in the region of application 
of the theory, the anomaly in the compressional 
modulus is less than its normal part. In this re
gion, the expression for the anomalous part of 
the elastic modulus, obtained in the present work, 
is identical with the corresponding expression 
from the previous research, [t3] where the ano
malies of the thermodynamic quantities were 
computed by a different method. 

4. We now investigate Eq. (11). One must 
transform from this equation to the equation for 
the mean field. Here, we make use of the results 
of [1 3]. Writing (11) symbolically in the form of 
the relation Lv = 0, and expanding the operator 
L in a sum of operators of zero, first and second 
orders in 7], L = L0 + L1 + L2, we get for the 
mean field ( v ) 

(Lo + (L2)- (L,MoL,))(v) = 0. (25) 

Here M0 = L01, i.e., 

M0'1jJ (r, t) = S G0 (r- r', t- t')'¢ (r', t') dr' dt', 

where G0 is the Green's function of the equation 
L0v = 0. In (25), terms not higher than second 
order in 7] are considered. We write Eq. (25) in 
the explicit form 

< ··\ + n2 " ,.- ' _ av 2 ( ~ 2 '2 
v/ v - ,v/ --"l"]o 

p p 

X S g2 (r-r',t-t')(v(t',r ))dt'dr' 

2 '2 
- ~v ~g2 (t-t',r-r')"l"](t, r)"l"](t', r')(v(t', r'))dt'dr' 

X Vr"2 g2 (r"- r"', t"- t"')<lfJ (r, t) +"I"] (r', t')] [1"] (r", t") 

+"11 (r'", t'")])(v (t"', r"'))dt'dt"dt"'dr'dr"dr'") =0, 
(26) 

where the integration over t"' is carried out from 
- oo to t", over t" from - oo to t', and so on. 

As calculations show, account of the latter 
component on the left side of (26) leads to cor-

rections of order tl:A/"A where !;)."A = a!.}/{J is the 
jump in the elastic modulus in the phase transi
tion. Inasmuch as we are interested in the case of 
second-order phase transitions, far from the 
critical Curie point, these corrections can be 
neglected. Throwing away the last term in Eq. 
(26) and substituting in it ( v) = ( v )e-iwt +iq · r, 
we rewrite it in a form analogous to (12), with the 
one difference that in place of the quantity 
K1 ( w, q ), we have the quantity Q1 ( w, q ), where 

2ot '2.,., 2 1 Q 1 ( (J) q) = v "10 

' p - 2ot + 6q2 - iwx, 

2 '2 00 

+ ~v ~~ g2 ("r, R) "I"] (t, r) "11 (t- -r, r- R) eioo<-iqR d-r dR. 
0 (27) 

Proceeding as in the case T > ®, we find for the 
quantities Qt and Q2 [ Qt + iQ2 = Q ( w) = Q1 ( w, 0 )1: 

4av'2 axw + av'2k8 Twx Q2 ( CiJ) = -- ---::---:-'--....,........,_ 
PP (-2a) 2 + x2w2 2pn:2 

l<m 

S k2dk 
X (29) 

0 ( -2a + fJk2)[4( -2a + flk2)2 + x2w2]" 

The first components on the right sides of (28) and 
(29) correspond to the results of Landau and 
Khalatnikov. The integrals therein, with accuracy 
up to the replacement of a by -2a are equivalent 
to the integrals entering into (19) and (20). 

5. We now estimate a comparison of the results 
obtained here with experiment. The true ("re
normalized") compression modulus is given by 
the expression 

~ = { A.-Ki(O) 
A.- Q,(O) 

for T> 8, 
for T < 8. 

(30) 

The dependence of ~ on temperature is repre
sented schematically in the drawing. Along with 
the jump in the compression modulus in the transi-

.tt I 
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tion, there is also a decrease in the modulus in 
both phases near the transition point, which 
agrees qualitatively with experiment. 

For a sound wave of low frequency ( wT « 1 ), 
where T == X I 01 for T > @ and T == - x/2a for 
T < e, the expression for the absorption coeffi
cient can be represented in the form 

for T > 8, 
(31) 

for T < 8. 

Here cij - c~ == 01~}/{3p, where c1 and c0 have the 
meaning of the sound velocities in the symmetric 
and asymmetric phases respectively, sufficiently 
far from the transition point, in order that the 
fluctuations brought about by the anomaly not be 
important. At the same time, it must be sufficiently 
close that the inequality IT -®I « ® be satis
fied (condition for the applicability of the phe
nomenological theory); Dc2 is the anomaly in the 
sound velocity. 

We see that when cij - cr ~ Dc2 (and this 
usually takes place for I T - ® I of the order of 
a fraction of a degree) the sound absorption co
efficient in the symmetric phase is only several 
times smaller than the absorption coefficient in 
the nonsymmetric phase. Experiment [1•4] in gen
eral confirms this conclusion. Whether one can 
make a more accurate comparison of theory and 
experiment is doubtful, since reliable and unam
biguously interpreted experimental data2 ) refer 
only to a single case-the He I - He II transition, 
and for this transition as has already been ob
served the calculations should be carried out 
again. 
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2 lwe have in mind media in the symmetric phase of which 
there is no linear relation between the acoustic deformations 
and the transition parameter. 
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