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We consider the nonlinear theory of cyclotron resonance in a uniform low-density plasma. 
The kinetic instability of the quasistationary state of the plasma in a monochromatic plane 
wave field is discussed. The possibility is indicated of using this instability for turbulent 
cyclotron heating. An example is given of resonance (continuous) acceleration of a nonrela
tivistic particle in the electromagnetic field produced by two plane waves. 

INTRODUCTION 

THE effectiveness of cyclotron heating of a low
density plasma, which derives from the resonance 
absorption of electromagnetic energy at harmonics 
of the gyro-frequency of the plasma, [t] is reduced 
when a steady-state situation is reached-this is 
the so-called plateau. [2- 4] In this state the cyclo
tron absorption is reduced to very low values and 
the plasma is not heated. For this reason it is of 
interest to investigate cases in which the time re
quired for the establishment of this plateau is large 
or in which the plateau is not formed at all. 

These questions are considered in the present 
work. On the basis of an ar;talysis of the motion of 
particles in a specified electromagnetic field it is 
shown that the time in which the cyclotron absorp
tion is reduced can be made large if the electro
magnetic wave propagates along the magnetic field 
with the velocity of light. The absorption of elec
tromagnetic waves under these conditions is con
sidered in the "quasilinear" approximation. A 
criterion is found for the kinetic instability of the 
quasi-stationary plasma state in the field of a slow 
monochromatic plane wave with respect to a wave 
propagating along the fixed magnetic field H0• This 
criterion is found to be the same as the stability 
criterion for the plateau obtained in quasilinear 
theory. [ 5] An instability of this kind can increase 
the efficiency of cyclotron heating by providing a 
mechanism for the continuous transfer of energy 
to the plasma (cf. [5]). The latter situation is illus
trated using the example of the nonrelativistic mo
tion of a charged particle in a field produced by 
two monochromatic plane waves. 

MOTION OF A CHARGED PARTICLE IN A MAG
NETIC FIELD 

In this section we treat the motion of a charged 
particle in the field produced by a plane electro
magnetic wave propagating along a fixed magnetic 
field H0• This problem has been studied by anum
ber of authors.Cs-s] However, since the solution of 
the problem will be used later in this paper, we 
present it here in a form suitable for our purposes. 
Let a plane homogeneous linearly polarized wave* 

E1 =Eo cos w(t- nor I c), H1 = [noEt] 

propagate along the magnetic field: 1l 

Ho = {0, 0, Ilo}, Eo = {Eo, 0, U}. 

In the variables s = w (t- n0z/c), u = p/m 0c where 
p is the momentum, while m 0 is the particle rest 
mass and c is the velocity of light, the particle 
equation of motion in the field (E1, H0 + H1) is 

_:t~ = __ J.. ____ {~-t (- 1 _ n0u ) + ~(,..u) +[uno!_ )r· (1) 
ds 1- n0u/x x : x xn0 . 

Here, A.= wH/w, WH = eHo/m 0c, e is the particle 
charge, K = (1 + u2) 112, p. = E1/H0 = P.t cos s, 
Mt << 1. 

We now introduce the "slow" variables A, v, 
and cp (ux =A sin (s + cp), uy =A cos (s + cp), 
v = uz). After taking averages over the variable 
s, which appears explicitly, the equations for A, 

*[n0 E,] = n0 X E,. 
1lThe motion of a charged particle in the field of a plane 

wave propagating at an angle to the magnetic field can be 
studied in a similar fashion if E 0 1. H0 (cf.(• 1). 
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v, and qJ are found to be (the dot denotes differentia
tion with respect to s) 

A = !J,o sin cp, 

· f." 1 !-'·o · flonoA . _ 
cp = Q- + Acoscp, 1' = Q- sm cp, (2) 

where J..l.o = J..L1A./2 (for a circularly polarized wave 
J..l.o = A.J..L 1 or J..l.o = 0 depending on the direction of 
rotation of the vector E1 in the wave), Q = K- n 0v. 

From (2) we have Zl 

q = no"K - c = const; (3) 

1 aH 
1" =c -QDri" (4) 

Here 

H = p(nol'l I p + v)Z I 2no + Anwo cos cp = eonst, 

p = no2 - 1, 'l. = i"- !J I llo. (5) 

The equations in (4) are the Pfaff equations. 
The qualitative nature of the trajectories on the 
phase plane is shown in Figs. 1-3 (-n < r.p < n). 

When n% » 1 (this case can be obtained from the 
nonrelativistic equations of motion) the phase 
trajectories v = v1 (cf. Fig. 1) are similar to the 
trajectories of a charged particle in an electro
static field. The width of the trapping region ~v 
and the oscillation frequency Q 0 close to the state 
of equilibrium v = v0 are given approximately by 
(!J.o « 1) 

!lv ;:::: 4"¥!1-;,lo,- Qo ;:::: noVMo"1o I i.; Vo ;:::: VI- ~toA I Ao, 

VI= u"- l) I no, Ao = Av=v,. (6) 

In many ways the case n~ < 1 is similar to the case 
n% > 1. However, the complete analysis requires 
taking account of relativistic effects. 

Finally, when n% = 1 (the "autoresonance" mo
tion [7] cf. Figs. 2 and 3) the equations for A and r.p 
are 

A.= f.lo sin cp, ~ = 1 + floA -l cos cp (7) 

and coincide with the averaged equations for a 
harmonic oscillator with a sinusoidal external 
force. The parameter ~ characterizes the devia
tion between the frequency of the external force 

2 )From the quantum-mechanical point of view the change 
in the momentum of the charged particle in the plane wave is 
along a line determined by the momentum increment due to 
the radiation of a photon (cf.l• ]): 

dA _ fzwHmo I fzwno _ "A 
dv-- --;;- ---c-- -A-;;;· 

Using the Doppler condition it is easy to show that the func
tion q(A, v) =constant satisfies this equation. 

u 

l 
Llll -L-J----l-__:"'-d-,..-:-----+--

1 

----~ -----_[___~ A~o 
FIG. 1 

and the characteristic frequency of the oscillator: 
~ = 0 corresponds to the resonance case and ~ -.c 0 
to the nonresonance case (A 0 = -,.. 0/~, ~ < 0). 

GYRO-RESONANCE ABSORPTION OF ELECTRO
MAGNETIC WAVES 

The damping of a wave in a plasma can be de
termined from the change in particle energy. If 
the wave damping is small, so that the particle 
energy does not change greatly because of the 
change in wave amplitude, the nature of the wave 
absorption in the plasma can be understood from 
an analysis of the particle motion in a specified 
electromagnetic field. The particle energy only 
changes significantly when the Doppler condition 
is satisfied: 

v ;:::: Vp = (x - /,) / no. 

When n0 » 1 the particle energy does not increase 
continuously. The characteristic time for the re
duction of the absorption T 0 (the time required to 
establish the plateau) can be estimated from the 
time required for the dephasing of particles loca
ted on different phase trajectories near v = v1 (cf. 
Fig. 1). This time is determined by the width of 
the spectrum ~ w of the particle oscillation fre
quencies. For the slow variables the frequency 
vanishes on the separatrix. Hence we can write 
~w ~ wHn 0, while 

To ~ 1 /.!lw ~ 1 I now lf~toAo. ( 8) 

This relation is similar to the one used in the 
theory of damping of longitudinal waves and has 
an analog in the quasilinear theory (cf.[loJ). 
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A 

'f 
FIG. 2 

When n 0 = 1 it is possible to have trajectories 
which vanish at infinity (.6 = 0, Fig. 2). The change 
in the energy of the plasma particles is computed 
in similar fashion from the change in the energy of 
a harmonic oscillator under the effect of a force 
whose spectral peak is close to the characteristic 
frequency of the oscillator. The width of the spec
trum .6w is determined by the quantity .6 0 = (.6) 
the mean value of .6 in the initial particle distribu
tion function (cf. Eq. (7) and Fig. 3). In the non
relativistic case .6 0 ~ f3T, while 

(8') 

where {3~ = T/m 0c2, T is the plasma temperature. 
Thus, when n 0 = 1 the time T 0 is independent of wave 
amplitude. 

A similar conclusion can be drawn from the 
quasilinear theory. Consider a packet with all 
possible polarizations propagating along a magnetic 
field with the velocity of light. The electromagnetic 
energy (per second) radiated by the charged parti
cle in this wave is [(cf.[11 ])] 

e2 PJ...2 
dlV =- -6(w- w!)k2 dk, (9) 

8n m2 

where p = {pl, Pz} is the particle momentum, 
w 1 = QH- kpz/m (the Doppler condition) QH 

= WHmofm, m = m 0K, k = w/c is the modulus of 
the wave vector. 

The quasilinear equation for the particle momen
tum distribution function f = f(pl, pz, t) is (cf. [5]): 

(10) 

((2rr) j Ekk2dk is the electromagnetic energy of the 
packet per unit volume). In the variables q =me 
- pz, p = Pz (diffusion line) the quantity w 1 = w 1 (q) 

A 

FIG. 3 

while 

!!_ = 2n3B(q)mo3WH2e2 {_!_( D at)+!!__ at}. (11) 
at c3q3 ap ap me ap 

The damping factor y 0 is 

e2q2 r 
Vo =- 4n3-- J tdp, 

moWH P, 

(12) 

It follows from (11) that the total number of par
ticles on a line q = const is a constant: 

00 

~ .!!!. t dp = const. (13) 
mo 

P, 

Thus, the damping factor Yo in the nonrelativistic 
case (m ~ m 0) does not change in the process of 
particle diffusion in momentum space and is re
duced when the mean particle mass exceeds the 
rest mass. 

Features similar to those considered above 
must also hold for "oblique" waves with nz = kzc/w 
= 1 and for waves propagating across the magnetic 
field H0 (in the nonrelativistic case). This follows 
from the fact that the plasma particles behave like 
harmonic oscillators under these conditions. In 
this case the damping of the wave is due to the 
momentum derivative of the intensity of particle 
radiation and an instability is possible only if the 
dipole approximation does not hold; the condition 
for establishment of the plateau is then modified 
considerably. This result provides another inter
pretation of the conclusions of Mazitov and 
Fridman [t 2] regarding the damping of plasma 
waves propagating across a magnetic field H0• 

The results given above for a monochromatic 
wave have been obtained under the assumption that 
the wave amplitude remains constant. Changes in 
wave amplitude can be neglected if the motion of 
the image points along the phase trajectories can 
be regarded as adiabatic in a wave with variable 
amplitude. Under these conditions the increase in 
energy of plasma particles due to the change in 
wave amplitude is small compared with the in
crease in the energy of the plasma particles due 
to an electromagnetic wave with fixed amplitude. 
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If y is the wave damping factor in the equilibrium 
plasma the wave amplitude can be regarded as 
constant if 

A = f.lo(1- nov) sin <p, 

v = ftonoA sin <p, 6 = v, 

~='A -1 +nov+ (flo/ A) cos <p, 

S ='ZWH/ C. (15) 

(14) Whence 

Thus, the wave amplitude must be large enough so 
that the plateau is established in a time short com
pared with the time required for a significant change 
in wave amplitude. 

CYCLOTRON HEATING OF A PLASMA 

The efficiency of cyclotron heating of a plasma 
is determined not only by the characteristic time 
T 0, but also by the magnitude of the damping factor 
y which, in general, increases with increasing n 0• 

The use of a wave characterized by n0 » 1 for 
plasma heating is also desirable because the de
velopment of the instability in the plateau serves 
as an effective means for heating the plasma if the 
plateau is unstable. The analogous problem in the 
quasilinear approximation has been treated by 
Trakhtengertz and the author. [5] We discuss this 
problem here for a monochromatic wave. 

1. We first consider (in the nonrelativistic ap
proximation) the kinetic instability of the quasi
stationary state (plateau) in the field of a slow 
(n0 » 1) monochromatic circularly polarized wave 
propagating along the magnetic field. The plateau 
is established in a time t ~ T 0 and it can be as
sumed 3> that when t » T 0 the distribution function 
on the plateau is a function only of the integrals of 
motion of the particles and the field (cf. 2-5) i.e., 
f = f0 = f0(q, H). We assume, as is usually done in 
the quasilinear theory, that the establishment of 
the plateau only changes the wave growth rates in 
the plasma. We now determine the linear response 
of the plateau state to a plane electromagnetic wave 
with specified w and k. An expression for the per
turbation current can be written if one knows the 
unperturbed motion of the particles in the plateau 
state (cf. for example[H,13]). 

For small amplitudes the trajectory close to 
v = v1 (cf. Fig. 1) can be approximated by 

s=w(t-nozfc) =ulHt. 

The unperturbed trajectories averaged over the 
gyro-frequency are then given by the equations: 

3)In the field of a specified electromagnetic wave the par
ticle distribution function f does not approach the stationary 
distribution function f = £0 (q, H) when t :>->To· However, the 
integral over f for any finite region of phase space tends 
toward the integral over f 0 for large t. Furthermore, the ex
istence of collisions means that f -> £0 (cd ' 0 l), 

q=A2 +(~o -vr=const, cr= ~~, v=-~~, 
H =: 1/2no(v- v1) 2 +!-loA cos cp =canst. (16) 

Let 

"' 
v1 = v1 (T, T', v'), r = r' + ~ v(To, T', v')dTo 

'<' 

be the unperturbed velocity and radius vector of 
the charged particle at time T as functions of the 
"initial" velocity v' and radius vector r' at time 
r'. The solution of the linearized kinetic equation 
for the correction f1 to the distribution function 
f = f1 + f0 (due to the electromagnetic perturbation 
field E = E 0 exp [iwt- ik · r], H = (c/w) [kx E]) is 
of the form (cf. [13]) 

e ~ ofo r osa' h = --LJ--, .l Fj~--dT, 
m a.~ Osa -00 OVfl 

(17) 

where~~ represents an arbitrary function of the 
initial velocity and coordinates 

[( kv) kflVa J 
F1fl = 1---;:;;- llfla+-W-

XEoaexp(iwT- ikr(T, T')) = SBaEa. 

The~& are taken to be the integrals of the mo
tion q and H. If the wave amplitude is small enough 
in the plateau regime we can assume that f = f(q) 
and is independent of H for the trapped particles 
whose phase trajectories encompass the equili
brium state v = v0 (cf. Fig. 1). This follows from 
the fact that the number of particles on each phase 
trajectory is the same for small JJ.o and a smooth 
initial distribution function f = f(v, A). Hence the 
current j in the perturbation wave is given by 

"'' ' e2 i d3 ' ' ofo I S oq a;k =- Re- .l v v;- .l flh--dT. 
m oq -00 OVfl 

(1_8) 

Here it is assumed that uik contains a contribution 
due to the trapped particles only. The conditions 
for which this statement is valid are indicated be
low. 

We limit our analysis of the plateau instability 
to waves propagating along the magnetic field. As 
shown below, in this case the criterion for plateau 
instability coincides with the criterion for the 
plateau instability in the quasilinear theory. [5] 

The latter is valid for an arbitrary direction of 
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propagation both for the waves which form the 
plateau as well as for waves which are unstable 
at the plateau. 

Wave absorption for arbitrary propagation is 
determined by the following components of the 
conductivity tensor: u~, u~Y' uYY' u~z· Let us 
consider u;_x and u~z (the other elements can be 
treated in similar fashion): 

I e2 ('" 0 fo 
axx =- Re-;- J d3v'vx' fJq exp[- iun' + ikz(T')] 

f . {( kvz) k~Vx } fJq X jexp[tm-ikz(T)] 1-- 6~x+-- --d1: 
-oo W w fJvB 

e2 ( n) ('" ofo 
=2Re- 1 1-- .ld3v'vx'--exp[im'+ikz(1:')] 

mo' no oq 
!' 

X ~ exp [iw't - ikz ( 1:)] Vx (v', 1:', 1:) d1:, (19) 

n = ck/w. Using the variables A', cp', and q we find 

Vx =A (1:- 1:1 , q, A', <p') COS [(ilH't + <p('t- 1:1 , q, A', rp')], 

vx' =A' cos [wH't1 + <p']. 

Here we have taken account of the fact that (14) is 
autonomous. 

The tensor uik can be time dependent. Hence, in 
evaluating the stability criterion we average the 
values of the tensor components over the period 
T = 2rr/WH: 

(a.,/>=- Re ~ ( 1-~) ~ d3v' fJ!o 
mo \ no oq 

00 

X S A'A(To)exp[iwr0 - ikz(1:) 
0 

+ ikz ( 1:')] cos ( WHTo + <p ('to)- <p') dr0, 

To = 't- T'. 

From (14) we have 

z(T)- z(1:') = _c_[<p(To)- <p'] 
nowH 

To 
('" (1- nov) + CV1't0 - Cflo j COS <p d'to. 
o A 

(20) 

(21) 

If MoA ~ A' is small the harmonic components of 
the last term in (21) can be neglected. Then 

- ikcv0To- i I--± 1 (<p- <p') dT0. ' kc ) J 
\ noWH 

(22) 

The time dependence of cp, the phase in the trap
ping region, is represented by an infinite sum of 

harmonics of the rotational frequency Q (H) along 
the phase trajectory; outside of this region, but 
close to it, there is a term .6. w t with .6. w 
f;:j wHn0.6.v/2, while .6-v is given by (6). It then 
follows that ( u~x> is determined by the trapped 
particles if 

lw + WH- kvol < 1/z(kc/nowH + 1)no,1v~H- (23) 

The resonance condition for which absorption 
(amplification) of the electromagnetic wave occurs 
is written in the form 

W + WH- kcvof WH + lQ(H)wH = 0, 

l = 0, ±1, ... (24) 

Thus, (u~x) is determined by a discrete series of 
trajectories in the trapping region. If we consider 
the variables q, H, and 1/J, where 1/J is an angular 
variable, it is easy to show that 

Re { ~ dvz' d<p' f exp [ i,1(•l± To 
0 

+ i (-'!_c ± 1 J ( <p - q;') l dTo lJ. > 0, 
nowH / -

(25) 

Since we assume that the relation between w and k 
is given and corresponds to an equilibrium plasma, 
the instability condition is given by ( u' ) < 0. If 
Bf0/Bq < 0, is the case when a plateau is formed on 
the Maxwellian distribution function (cf. [ 5]), this 
relation yields 

1- n /no< 0. (26) 

For longitudinal waves, with damping given by 
the Uzz component, we have (17) 

aq c 
SBz--= Cz--. (27) ov11 n0 

If I w - kv 0 I < c .6. v the absorption is determined 
only by the trapped particles and to accuracy of 
order ..fJ;; we find v z = w /k. 

Thus, ( u~z) contains a factor which is approxi
mately equal to 1 - n/n0 and the stability condition 
(to this accuracy) again reduces to (26). 

If we use the Doppler condition, the plateau sta
bility criterion obtained in L5] can be written in the 
form 

(28) 

where k0 and k1 are the wave vectors respectively 
for the waves which form the plateau and the waves 
which are unstable at the plateau. For longitudinal 
propagation the criterion in (28) coincides with that 
in (26). 
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2. In a paper by Trakhtengertz and the author[5J 
it has been shown in the quasilinear approximation 
that the energy of a nonrelativistic particle increa
ses continuously in the development of a plateau 
instability (in which case the velocity of the parti
cles satisfies several (two) Doppler conditions for 
electromagnetic waves with different projections 
kz). In order to understand this phenomenon let us 
consider the interaction of a nonrelativistic charged 
particle with two monochromatic waves. If the par
ticle velocity simultaneously satisfies two Doppler 
conditions this means that there exists a coordin
ate system in which the frequencies of both waves 
are equal to wH. Assume that these waves propa
gate along the magnetic field H0 and that they see 
refractive indices n0, n1 > 0, and are polarized in 
one plane. If h 0 and h1, the magnetic fields of these 
waves, satisfy I h0 I = I h1 1 = h, the equation of mo
tion of the particle in the electromagnetic field 
produced by these two waves together with the 
magnetic field H0 has solutions of the following 
kind: 

. h . h 
A=-11n Ho sin<p, <p=-11n HoA cos<p, 

v = o, s = s+ (h1 = ho), s = s- (h1 = -ho), 

2nl (2l- i)n 
£:__ = ~-;;· 6+ = t1n 

!ln = n 1 - n0, l = 1, 2, .... (29) 

Similar solutions can be obtained for waves with 
different polarization. The coordinates ~ = ~ ± 

define planes in which the time-averaged magnetic 
force of the waves vanishes but in which the time
averaged electric force does not vanish. For 
waves with the same polarization these are planes 
in which the variable magnetic field vanishes. 
Thus, under these conditions the transverse en
ergy of the particle increases whereas the longi
tudinal velocity and the coordinate remain un
changed. The relations in (29) are similar to those 
considered above and the integral curves for (29) 
are the same as those in Fig. 2. 

Let us now consider the work done by the elec
tric fields of these waves on the particles. From 
the particle equation of motion we find 

~ cdv,jdt- n1d(v2/2)/ dt 
-(vEo)= , 
m no- n1 

e cdv,/dt- n0d(v2/2)/ dt (30) 
-(vE!) = , 
m n 1 -no 

where E 0 and E1 are the electric fields of the 
waves while vis the particle velocity. Since 
dvz/dt = 0, it is evident from (30) that as the trans
verse energy of the particle increases the work 

associated with the wave with the high refractive 
index is negative while that of the wave with the 
low refractive index is positive, in accordance with 
the relations between the electric fields at the 
point~ = ~ ±· These results are in complete agree
ment with the results of the quasilinear theory. [5] 

We note that in the relativistic case there is 
generally no reason to expect a continuous acceler
ation of the electron in the field associated with 
two plane waves (this also applies for the plateau 
instability) since two Doppler conditions can be 
satisfied simultaneously. 

3. We now wish to discuss the role of the plateau 
instability considered above in connection with ion
cyclotron heating. [1] If one uses the cold plasma 
formula it is easy to show[13J that on the Alfven 
branch of the plasma waves (which is usually used 
for cyclotron heating) the refractive index nA 
= n~(Pz) is independent of the angle between zthe 
direction of propagation of the wave and the ex
ternal magnetic field. For fast magnetoacoustic 
waves nz < n~. Thus, cyclotron heating is stable 
with respect to the cold plasma wave in the ap
proximation being considered here. The instability 
of cyclotron heating with respect to the ion-acous
tic branch is suppressed by Cerenkov absorption. 
However, the plateau instability can arise in a non
isothermal plasma since it is analogous to the in
stability due to the anisotropy in plasma tempera
ture. It is well known that the latter instability 
can arise on the ion-acoustic branch in a noniso
thermal plasma. [14] 

Finally, if one uses oblique fast magnetosonic 
waves for cyclotron heating the plateau will be un
stable with respect to the Alfven branch. However, 
the cyclotron absorption factor is small for mag
netosonic waves. 

CONCLUSION 

We have discussed the conditions under which 
there is effective transfer of energy to a plasma. 
This situation arises when no plateau is formed or 
when the plateau is unstable. We wish to empha
size that we have only considered a homogeneous 
plasma and even a weak plasma inhomogeneity can 
change the results given above. The condition for 
which an inhomogeneity does not effect the stability 
criterion (24) can be obtained by comparing the 
time for establishing the plateau To and the time T 1 

for the displacement of the plateau on the distri
bution function due to an inhomogeneity with mag
nitude of the order of the trapping region. 4> If the 

4 )A similar situation occurs in the damping of plasma os
cillations propagating across a magnetic field.[ 12] 
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effect of the magnetic field inhomogeneity on the 
particle motion is neglected, 

a ( Wo- Wu ) Wo - Wu 
c~v ~- T1 k az ko o 

for Wo- wu ~ c~v 
ko 

(31) 

and the inhomogeneity will be unimportant if 

1 a ( Wo- Wu \ 2 
1-!oVr~--- ---) , 

8nowo az \ ko ; 
T ko __ wono. Vr2=-, -

mo c 

(32) 

If (w 0 - w H)/k0 ~ vT, the condition in (29) is written 
in the form 

~-tokL/ ~T ~ 1, (32a) 

where {3T = vT/c and L is the characteristic scale 
size of the plasma inhomogeneity. 

Thus, a plateau can be established and can be 
unstable in an inhomogeneous plasma in the field 
of an electromagnetic wave with amplitude that 
satisfies (32). If the inverse inequality to (22) holds 
the plateau is not formed and the wave absorption 
is evidently described by the linear theory. 

I wish to thank V. K. Yulpatov for valuable com
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manuscript. 
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