
SOVIET PHYSICS JETP VOLUME 22, NUMBER 4 APRIL, 1966 

COLLECTIVE EXCITATIONS IN SEMIMETALS 

A. N. KOZLOV and L.A. MAKSIMOV 

Submitted to JETP editor May 11, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 1284-1292 (October, 1965) 

Collective excitations in a two-band electron system with Coulomb interaction are investi­
gated in the presence of bound electron-hole pairs. The case of intersecting bands, which is 
formally similar to the case of superconductivity, is considered. An acoustic branch, which 
is not suppressed, by plasma oscillations (as in a superconductor) but exists simultaneously 
with the plasma branch, is obtained by taking into account only the Coulomb interaction ma­
trix elements (which vary like I k 1-2 at low values of the momentum transfer k). If short­
range exchange matrix elements are taken into account, a gap appears in the acoustic branch. 
When k = 0 the energy of the excitations with nonvanishing momenta is found to be close to 
2 ~ quadratically in the coupling constant. 

KELDYSH and Kopaev[tJ and the present au­
thors[2J have considered one phenomenon connec­
ted with the Coulomb excitation of electrons in 
close-lying energy bands. The gist of the phenom­
enon is that particles can be paired with holes in 
such a way that realignment of the spectrum takes 
place near the band extrema, whereby a gap ap­
pears in the spectrum if the bands had initially 
overlapped. The situation is similar here to super­
conductivity, and the production of a pair of single­
particle excitations must in particular be regarded 
as a breaking of the bond of an electron-hole pair. 
With change of temperature the system experiences 
a second-order phase transition, the transition 
temperature being a point of pair condensation in 
the ground state. The existence of a condensate of 
bound pairs of quasiparticles allows us to expect 
superfluid properties to appear below the phase 
transition point. To check on such a possibility, it 
is necessary to verify that all the branches of the 
excitations satisfy the superfluidity criterion" To 
this end, we consider in this paper the collective 
oscillations, in which the bound pairs move as a 
unit. We confine ourselves to the case of strongly 
overlapping bands, when an appreciable realignment 
of the spectrum takes place in a narrow energy 
layer at the Fermi surface. This case is simplest 
mathematically, in view of the complete formal 
similarity to the case of superconductivity. 

Collective excitations in a superconductor were 
considered in detail by Vaks, Galitskil, and 
Larkin [3]. We make use of their method, which is 
based on the formal similarity between the prob­
lem and the one-dimensional relativistic problem, 
in which the role of the mass is played by the mag-

nitude of the gap ~. and that of the one-dimen­
sional spatial momentum by the particle energy 
reckoned from the Fermi level. We confine our­
selves to examination of zero-spin excitations for 
the case when the pairing occurs in a singlet state. 
It can be easily shown that neither excitations with 
spin 1 nor excitations in a system with triplet pairs 
produce new branches. We use the notation in the 
cited paper [3]. Some of the formulas will turn out 
to be identical with those of the mentioned paper. 
Nonetheless, we shall write them out because we 
are dealing with an entirely different physical 
phenomenon, and also to preserve the unity of the 
exposition. 

1. RELATIVISTIC FORMULATION OF THE PROB­
LEM 

The Hamiltonian of the two-band system is of 
the form 

H = :2j [a;2av2E2(p) + avt+aP1El(P)l 

Here 

(1) 

PF is the Fermi momentum. The interaction ma­
trix element 

( P1~1 ,p2'n2') = (' d3r1d3r2'1jlp,n, (r1) 'ljlp,'n,' (1• 1) 
P1 n1 P2n2 .) 

(2) 

889 



890 A. N". KO Z LOV and L. A. MAKSIMOV 

is taken with the Bloch functions ~pn(r); n runs 
through the values 2 and 1, corresponding to the 
upper and lower energy bands. The summation over 
all p is in the unit cell of reciprocal space. When 
the extrema of the bands are at different points of 
the Brillouin cell, p must be measured in each band 
from its own extremum. The formulas will not 
differ in this case from those obtained in the case 
of coinciding extrema. We shall include in the 
Hamiltonian (1) only the Coulomb matrix elements 

(3) 

which behave like I k l-2 for small p1 -Pi = k. The 
remaining interactions, if small compared with (3), 
can lead to an appreciable change only in the 
acoustic branches of the spectrum of the collective 
excitations. We shall show that such interactions 
give rise to a gap in the acoustic branch. 

We introduce, following[ 3J, the four-rowed 
matrices 

V1 = (~ ~ J, V4 = ( ~ ~ ), Y3 = ( ~i (~), Ys = ( 01 ~ 1 ) 

(4) 

and the four-component operators 

ap =--~ ap··r-!· (5) 

The dispersion law in both bands is rewritten in 
the form 

Ez(p) = (1- G)E(p), E't(P) = --(1 + ~)E(p), 

(6) 

In the notation of (4)-(6), the Hamiltonian takes 
the form 

We define the Green's function by means of 

G(p, t) = i<Tap(t)iip (0)/. 

We introduce a one-dimensional relativistic 
momentum operator 

(7) 

(8) 

P = \'3P3 + V•P•, p.1 = E, P• = ipo = i(e + GE). (9) 

For noninteracting particles, the Green's function 
takes the form 

interband transitions. The function G is expressed 
in terms of the self-energy part: 

c-1 (p) = G0- 1 (p) + k = ip + k, (11) 

where, in the first approximation 

k(P)= -i~ d"p'y4G(p')y47J(p-p'). (12) 

In formula (12) there has been carried out partial 
summation of the Coulomb chains of components 
lJ(p - p'): 

4:rte2 
7J (P- p') = ----~~--. 

(p- p')2 + Xn2 
(13) 

The nondiagonal elements in k can be referred to 
the term ip. By the same token, they reduce to a 
renormalization of the zero-order spectrum con­
stants; we shall assume that this normalization has 
been effected. Thus, the matrix k is diagonal in the 
band index and is of the form 

' ( ~ 0 ) 
L = ~ = 0 ~· . 

(14) 

Choosing the phases of the Bloch functions lPpn (r) 
in suitable fashion, we can make ~ real, so that 
~ = ~. The Green's function G is then of the form 

~-ip 
G(p)= Pz+~z· 

(15) 

The spectrum of the elementary excitations is de­
termined by the pole of G(p): 

e = -~E ± (£2 + ~2)'h. 
Substituting (15) and (14) in (12) we obtain for 

the gap ~ the equation 

. . ' ' ~d•p' 
G = -1 \ lJ ( p - P ) -, ----"~ . 

• p 2 + ~- (16) 

It was shown earlier[Z] that if the bands overlap 
sufficiently strongly (when the Debye radius KJS is 
large compared with the reciprocal Fermi momen­
tum Pff) the realignment of the spectrum takes 
place predominantly in an energy layer of thickness 
2w 0 = KDPF/m near the Fermi surface. In this 
region 'ZJ(p- p') depends only on the angle between 
p and p': 

(ll (p- p') = 7J (nn'), n = p/ I PI, n' = p' / /p'/. 

Confining ourselves in lJ to the zeroth harmonic 

go= r .\ lJ (nn')dn'/4n, 

we find that ~ does not depend on the angles and 
(10) satisfies the equation 

where p2 = p~ + p~. For interacting particles, the 
matrix G has diagonal terms that correspond to 

(17) 



COLLECTIVE EXCITATIONS IN SEMIMETALS 891 

The element of integration d')> is written here in 
the form 

do mpF do dpadpo (18) 
d"p = p 4:rt dJp = 2:rt2 4:rt ~. 

Cutting off the integral (17) at the end-point fre­
quency w 0, we obtain for A the expression 

1 = g0 In (2<:t>o I~) = goL. (19) 

The small parameter in the problem is the ratio 
KDIPF· 

2. COLLECTIVE EXCITATIONS 

The spectrum of the collective excitations is 
determined by the poles of the two-particle Green's 
function 

K(1, 2; 3, 4) = i(Ta(1)ii(2)a(3)ii(4)). (20) 

The poles of the two-particle Green's function are 
obtained from the conditions for the solvability of 
the homogeneous equation obtained from Dyson's 
equation by discarding the inhomogeneous part. 
The variables 3 and 4 enter this equation as param­
eters and can be omitted. The homogeneous Dyson 
equation has in first order in the interaction (tJ the 
form 

J((p, k) = iG(p + k/2)v·~ '1J (p- p') 

XK (p', k) y,G (p- kl2) d4p' - iG (P + ki2)V• 

X G (p- kl2) V (k) ~ Sp y,K (p', k) d4p'. (21) 

Here 

p = (pi+ p2) I 2, k = (k, w) =Pi- P2· 

In expression (21), the significant region of in­
tegration is that near the Fermi surface. In this 
region 

'1J (p - p') = 'IJ (on'), d4p = pdJpdn I 4:rt. 

Integrating (21) with respect to d2p we obtain 
for the functions 

K;(n,k) = 1I4Spy;~d2pK(p,k) 

the equations (see [3], (27)) 

K; (n, k) = :rt;r( w, nk) p ~ '1J (nn')Kr(n', !c) do' l4:rt 

-:rt;4 (w,nk)·4pV(k)~ K4(n',k)dn'l4:rt, (22) 

where 

:t;r ( w, nk) = ~ Sp ~ y;G (Pi) V4VrV4G (p2) d2p. 

The quantities 7T ir are connected with the quan­
tities Ilir calculated in[sJ (formula (28')) by the 
simple relations 

Rewriting formulas (A.9) of[S] and taking (23) 
into account, we obtain 

:rtu = L - j + ~2j, :rt55 = L + ~2/, 

:rt5a = -:rta5 = -qJ I 2il, :rt54 = :rt45 = -qsf I 2ti, 

:rtaa = f + (qi- qa2/) I q2, :Tt44 = (qa2 - qa2/) I q2, 

:rta4 = :rt4a = -q,(qa- qat) I q2• (24) 

Here 

q, = iw, qa = knvF, f =arc sin PI ~Yi- W, 
~2 = -q2 I M 2 = [w2 - {knvF2)] I M 2• (25) 

We expand Ki(n, k) and '1J(nn') in spherical har­
monics: 

K; = ~KzmiYzm(n), .J._ '1J (nn') = ~ gzYzm (n) Yzm • (n'). 
4:rt lm lm 

(26) 

We put 

Substituting in (22) the explicit expressions for 
the quantities in (27), we arrive at a system of 
algebraic equations for K~ m: 

(28) 

_ ( qaf ) ]( 5 }- 4.._ V(/,) ( qa2 - qs2f) K 4 
\ 2 A !1m umoP C 2 . 00 , 

u ~m • q ·~ 

I, 

+(L + P2f)u,mKz~m} + 4bmoPV(k) (qsfl2~)zooKoo4• (29) 

The equation for K~m' as in [sJ, has no non­

vanishing solutions when k "" 0, and can be disre­
garded. When l = 0 the equation for K0~ can be 
separated, accurate to terms of order g0: 

[{ 4- g ( qa2- qa2f) K 4- 4 V(k) ( qa2- qa2f) r.r " 
00 - 0 2 00 P ? HOO . 

q 00 q- 00 

(30) 

This equation has a solution K~o "" 0 when w » A, 
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and corresponds to plasma oscillations with dis­
persion 

(31) 

Wpr 2 (0) = 8:n:ne2 / m. (32) 

Here n-electron density in band 2 or hole density 
in band 1. The fact that the value of w~1 (0) is 
double the value obtained for a metal is due to the 
presence of two types of carrier. 

We obtain the second branch of the excitations 
with l = 0 by discarding the terms with g z "" 0 in the 
third and fourth equations of system (28): 

(33) 

iw 
Koo5 =-go 2~ fKoo3 + go(L + ~2f)ooKoo5 • 

Solving (33) for {3 « 1, we obtain 

w02(k) = 1M 2vF2(1 +go). (34) 

We see thus that the acoustic-frequency branch 
exists independently of the plasma branch, unlike 
in a superconductor [3]. This result is physically 
obvious. In a superconductor, the pairs are charged 
and their motion is connected with long-range 
Coulomb forces, so that the acoustic branch is 
suppressed by the plasma waves. In the model 
considered here, the pair are neutral and interact 
with the aid of forces with finite radius. 

Let us find the limiting frequencies of the exci­
tations at k = 0 for large Z. For these excitations 
K~m = 0 and we have 

(35) 

Equating the determinant (35) to zero we obtain 

( 1 - g1L- gl~2f) ( 1 - gzf) - g}~2f = 0. (36) 

When g z « g0, the value of w is close to 2 ~ and 

Hence 

(37) 

Let us consider now the influence of secondary 
interactions (other than (3)) on the spectrum of the 
collective excitations. We write down the matrix 
element (2) in the form 

( p11n1 
1
Pz' n2' ) , ' = ('\Wa) n1n1 ' V«~ (Ph P1 ; P2, P2) (V<'W) n,'n,· 

\ p, n1 pznz 
(38) 

Summation over a and {3 is implied. In the notation 
of (5), (6), and (38), the Hamiltonian (1) takes the 
form 

- . 1 -- ~ll-

H = ~ap(-ly3E + Y4£E).ap + /2~ap,Yaapy ap;YpPp,· 

(38') 
Formula (12) for the self-energy part goes over 

2: (P) = - i ~ d4p'yaG (p') y~ VaB (p- p'). (12') 

We will rewrite expression (14) for 2: in the form 

2: = V1~1 + iys~z. (14') 

G(p) then takes the form 

G( ) = - (p + '\'1~1- iys~z ~2 = ~~2 + ~zz. (15') 
p 2 I A2 ' p jLl 

Substituting (14') and (15') in (12 1) we obtain for ~1 
and ~2 the equation 

X (y,~,- iys~2) yB. (16') 

We write down (16') as follows: 

. d"p' . 
~1 = - l ~ p'Z + ~2 (Au~!- lA15~2), 

(39) 

where 

(40) 

Air can be readily expressed in terms of yaf3: 

(41) 

The quantities yO!f3 are in turn expressed in terms 

of the matrix elements (n~, n2) with the aid of rela­
n1, n2 

tions that are the inverse of (38): 

(42) 

Introducing for the different interactions (2) the 
notation 

( 22)_(11\_(21\_ (12\_v 
22,-\11)- 21)- 12)-, 

( 2 21 = ( 1 1 )* = w 
1 v 2 2 , 
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f 1 1 ' ( 1 1\ ( 1 2 \ * ( 2 1 )* 
\, 1 2 ) = , 2 1 ) = d 1 ) = d 1 = Rt, 

Rz±Rt = 2R± (43) 

and substituting (42) in (41), we obtain 

A11 = V + Re lV, A~4 = V + S, A33 =-V + S, 

Ass = - V + Re W, A14 = 2 Re R+, A 13 = 2i Re R_, 

A15 = -i Im W, A~a = 0, A4s = -2i lm R_, 

Aas = 2 Im R+- (44) 

We shall assume that the additional interactions 
W, S, and R are small compared with V. As noted 
above, these interactions can greatly influence only 
the acoustic branch (34). In view of this we confine 
ourselves to an analysis of their first harmonics. 
For the S-components of the matrix elements (43) 
(we shall denote them by lower-case letters) we 
can choose the phases of the Bloch functions l/Jpn in 
such a way that v = g0 does not change, and w 
becomes real and positive. Then A15 = 0 and the 
first two equations of (39) take the form 

. (' /11d2p . (' 11zd2p 
111 =-z(v+w)j P2 +!12 , 112 =-z(v-w)j P2 +!12 • 

(45) 
The third and fourth equations in (39) yield A41 

= A3t = 0. 
Of the two possible solutions of the system (45), 

a large value of the gap corresponds to the solution 
D-1 = D. and D-2 = 0, and we obtain for D. the expres­
sion 

1 = (v + w) In (2w0 / /1) = (v + w)L. (19') 

The Green's function (15') takes the form (15). 
The spectrum of the collective excitations is 

obtained from the equations 

K; (n, k) = n;, (w, nk) p ~ Asr (nn') Kr (n', k) dn' j4n 

- ni~4pll (k) ~ K 4 (n', k) dn' j4n, (22') 

where 
(46) 

From (22') we obtain for the low-lying branch 
of the excitations, corresponding to the solution 
K~0 = 0, K~0 "'0, and Kg0 "'0, using (46), (44), and 
(24), the system of equations 

Koo3 =[(v-s)(f+ qi-:-q32f) +2ir+( qJ) ]Koo3 

\ q- DO 2/1 00 

+ [2ir+ ( f + qaz_ qa2f) +(v- w) ( qJ) Jxoos, 
' q2 00 211 00 

Ko05 = [- (v- s) ( q4f J + 2r+(L + ~2f)oo] Koo3 

2~ . 00 

+ [- 2ir+( ~~) 
00 
+ (v- w) (L+ ~2f)oo J Koo5• (331) 

Neglecting the terms that are quadratic in the in­
teraction, we obtain from (33') 

(47) 

where 

(48) 

The authors are grateful to A. I. Larkin for use­
ful discussions. 

1 L. V. Keldysh and Yu. V. Kopaev, FTT 6, 2791 
(1964), Soviet Phys. Solid State 6, 2219 (1965). 

2 A. N. Kozlov and L.A. Maksimov, JETP 48, 
1184 (1965), Soviet Phys. JETP 21, 790 (1965). 

3 V. G. Vaks, V. M. Galitskil, and A. I. Larkin, 
JETP 41, 1655 (1961), Soviet Phys. JETP 14, 1177 
(1962). 

Translated by J. G. Adashko 
165 


