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A relation is established between the shift .6. and width y of a spectral line near the edge of 
the series and the amplitude for the scattering of electrons by perturbing atoms. The contri­
bution of an arbitrary number of partial waves to the scattering is considered, with exchange 
interaction taken into account. An examination of the broadening of the spectral lines of Na by 
argon shows that the calculated phase shifts can be checked against the experimental values 
of .6. andy. 

1. Fermi has shown [1] that the effective cross 
section for the elastic scattering of various slow 
electrons by neutral perturbing particles can be 
determined from the line shift caused by these par­
ticles in the absorption spectrum of alkaline metal 
atoms 1l (see also [ 2]). 

According to Fermi, the shift of the absorption 
line corresponding to the transition from the ground 
level to a level with a large principal quantum 
number n is due to two effects-scattering of the 
atomic electron in the state n by the perturbing 
particles, and polarization of the perturbing parti­
cles situated inside the atomic volume (aon2) 3, where 
a 0 is the atomic unit of length. Fermi obtained [1] 

for the line shift .6.sc due to the scattering effect the 
expression 

~sc = +!!_ (:rtcro)';,N, 
m 

(1) 

where m is the electron mass, o-0 the effective 
cross section for elastic scattering of an electron 
by a perturbing atom (or molecule) in the limiting 
case of very low velocities, and N the concentration 
of the perturbing atoms. 

The contribution .6.p of the polarization effect to 
the line shift has according to[i], an order of mag­
nitude -10 a e2N413 /ti, where Cl' is the polarizability 
of the perturbing atoms and e the electron charge. 
At relatively low pressure the polarization shift is 
small and therefore the cross section o-0 can be de­
termined from measurements of the shift for the 

1 )The alkaline elements are most convenient because their 
absorption spectra are located in the visible and in the near­
ultraviolet regions of the spectrum. 

higher terms of the absorption series. Thus, the 
values of o-0 were obtained for the atoms He, Ne, Ar, 
Kr, and Xe from the shift of the absorption lines of 
Cs in a noble-gas atmosphere[ 3J. The same method 
was used to investigate several other gases[3•4J. 

The influence of the surrounding particles on the 
absorption spectrum near the edge of the series, 
that is, at large values of n, was later considered 
by Firsov[ 2•5J, who studied the effects of the polar­
ization and of the conditions for the applicability of 
formula (1) in much greater detail than in [1]. He 
showed that formula (1) is valid only if the most 
probable value of the electron velocity in the state 
n is so small that the main contribution to the cross 
section is made by s-scattering, the corresponding 
scattering phase shift being much smaller than 
unity 2). 

In some cases it is very difficult to satisfy these 
conditions. Recently, in connection with many ap­
plications, the problem of determining the cross 
sections for elastic scattering of slow electrons by 
alkaline-element atoms has become quite timely. 
In this case, even at very low electron energies, 
lower than 0.01 eV, there are no grounds for 
neglecting the contribution made to scattering by 
waves with l >"' 0. 

We investigate in this paper the connection of 
the shift and width of the spectral lines near the 
edge of the series with the amplitude for the scat­
tering of electrons by the perturbing atoms. We 

2)More accurately, it is necessary that the quantities 
o0 - p77 (p = 0, 1, 2, ... ) be small. The scattering phase 
01 is defined throughout as that part of the phase which re­
mains in the interval (- 77/2, 77/2) after subtracting p77. 
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include the contribution made to the scattering by 
an arbitrary number of partial waves, with account 
taken of the exchange interaction, and without any 
limitation whatever on the magnitude of the scatter­
ing phases oz. 

2. Let us consider the influence of the surround­
ing particles on the absorption spectrum near the 
edge of the series, assuming that the impact­
broadening theory is applicable. We assume also 
that we can neglect the contribution made to the 
broadening by the inelastic collisions. The condi­
tions for the applicability of such an approximation 
will be indicated below. 

In the general case of a transition between de­
generate levels, the distribution I(w) of the intensity 
in the line is given by the expression 

l(w) = ~JB ------~B/2~-~--- (2) 
B ((J)-wo+~B) 2 +('w/2) 2 ' 

where 1[3, Y{3, and t:..13 are the intensity, width, and 
shift of the maximum of each of the line compon­
ents; 

N and v are the concentration and the velocity of 
the perturbing particles, u ~ and u g are the effec­
tive cross sections of the width and of the shift. 
The angle brackets denote averaging over the 
velocities and over the orientation in the space of 
the vector v and of the angular momentum of the 
perturbing atom. 

The line broadening corresponding to the tran­
sition from the ground state to a state with large 
value of n is determined almost entirely by the per­
turbation of the final strongly-excited level. In this 
case the cross sections u h and u g can be expressed 
in terms of the forward amplitude f(O) for scatter­
ing of the perturbing particle by the atom in a state 
corresponding to the considered line component {3. 
From formulas (37.79), (37.80), and (41.15) of[SJ 
it follows that 

I Z:rt f 0) II 
2:rt R f (0) aB = KIm B ( , <JB = K e B , (4) 

where K = Mv/ti is the wave vector of the perturb­
ing atom, and M is its mass. 

At first, to simplify the reasoning, we shall dis­
regard the dependence of the scattering on the spin 
momenta-this will be done later. The forward 
scattering amplitude f[3(0) is given by the expres­
sion 

where R is the distance to the perturbing atom, 
({Ja the electronic wave function of the perturbing 

atom, 1/!{3 the wave function of the valence electron 
of the alkaline atom, U the interaction between the 
atoms, and >¥aK,{3 the exact wave function of the 
system, satisfying the usual boundary conditions of 
the scattering problem. The function >¥a K, {3 is the 
eigenfunction of the Hamiltonian 

where H0 is the Hamiltonian of the perturbing atom, 
P the momentum of its nucleus, and p2/2m + V(r) 
the Hamiltonian of the valence electron in the field 
of the atomic remainder. For sufficiently large 
values of n, the average distance of the valence 
electron from the nucleus is of the order of aon2 

and is so large that the perturbing particle either 
interacts with the electron and does not interact 
with the atomic remainder, or, to the contrary, 
interacts only with the atomic remainder 3l. In 
calculating the shift due to the scattering it is ob­
viously necessary to consider only the interactions 
of the fi'rst type. Interactions with the atomic re­
mainder make a contribution to the polarization 
shift. We must therefore take U to mean the inter­
action between the valence electron and the travel­
ing atom. 

Let us expand the function <Pf3 (r) in plane waves, 
that is, in the eigenfunctions of the Hamiltonian 
p2/2m: 

'1-'13 (r) = (2n('~ G (~ i q) eiqrdq. (7) 

We expand also the function >ITa K, {3 in the eigen­
functions <l>a 'K', q of the Hamiltonian (6) without 
the potential V(r). The interaction U is taken into 
account exactly in the function <l>a 'K', q'. The ex­
pansion of functions >¥aK,{3 in terms of the func­
tions <I> a 'K', q' is written in the form 

"'¥ "K .. e = (2n(1' ~ G (~ I q') <D"K ,q' dq'. ( 8) 

Such an approximation is equivalent to the impulse 
approximation in the theory of nuclear collisions 
(see, for example, [s]). In its physical meaning it 
is equivalent to the approximation used by Fermi 
and FirsovL1•2•5J. 

Substituting (7) and (8) in (5), we obtain 

fp, (0) = - 2~~2 (2nf3 ~ G* (~I q) G (~I q') 

3 )It is assumed that the perturbation is produced by 
neutral and non-hydrogenlike atoms. 

(9) 

-, 
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If we go over from variables R and r to the varia­
bles R' = (MR + mr) (M + mr1 (the coordinate of 
the c.m.s. of the system of the perturbing atom 
plus electron) and p = R - r , then 

(<p<XeiKR+iqr ( U [llla.K ,q) = (2n)3• (<p<Xeixp I U (p) /lllax) 0 ( q -- q'), 

M m 
x=---q----K. 

m+M M+m 
(10) 

Since the electron momentum tiq is of order of 
magnitude tiq0/n in the state with principal quantum 
number n (tiq0 = p 0 is the atomic momentum unit), 
it is easy to show that at temperatures (300-70orK 
(the usual experimental conditions) q ~ 20 n-1Kv'm/M. 
Consequently, for all the values of n of practical 
interest, which certainly do not exceed n = 100, we 
have q » mK/M and K ~ q. Thus, 

/~ (0) = - 2~~2 ~ ( G (~I q) [2 (qlaeiqp [ U (p) [ID<Xq) dq. (11) 

We can express the forward scattering amplitude 
f~l(o) of a free electron with momentum tiq by the 
perturbing atom in terms of the same matrix ele­
ment which enters in the right side of (11): 

t'le (O) = -- 2;~~,z-<<v"eiqp 1U (p) JlD<Xq>· (12) 

The quantity f~l(o) obviously depends only on the 
absolute value of the electron momentum tiq. Using 
(3) and (4), we obtain 

2nli 1 
u(aB"+iaB')=mJ jG(~jq)j 2 jqel(O)dq. (13) 

The index f3 is specified in this case by the quan­
tum numbers of the valence electron. Therefore, 
(see, for example, [7]) 

G ( ~ I q) = Gnz ( q) Yzm ( 6q , qJq) . ( 14) 

Integration over the angles Bq and <Pq leaves in the 
right side of (13) the integral with respect to q, 
which contains the product of fql(o) and the distri­
bution function. 

~ W(q)dq = 1. (15) 

This integral does not depend on the quantum num­
ber m; consequently the widths and the shifts of all 
m - m' components of the line are identical in this 
case. Therefore the scattering effect leads to a 
line broadening described by the dispersion formula 
with width y sc and shift of the maximum bose• 
where in accordance with (3) and (4) 

2nli I 
'\'sc= 2N m J [Imjqel(O)] W(q)dq, (16) 

2n/i 11 
11sc=NmJ [Rejqel(O)]W(q)dq. (17) 

The superior bar denotes averaging over the orien­
tation of the momentum of the perturbing atom. 
Expressing f~l(O) in terms of the phases for the 
scattering of the electron by the perturbing atom 
oz [BJ, we obtain also 

"isc= N : ~ [ 4; 2; (2l + 1) sin2 01] W ( q) dq 
l 

=IV~~ qa(q) W(q)dq, (18) 

/i_•. [Jt ] 11sc=N-~ -2; (2Z+1)sin2oz W(q)dq. 
m q z 

(19) 

Here a- (q) is the effective cross section for elastic 
scattering of an electron with momentum tiq by the 
perturbing atom. In the same approximation as 
used above, we can repeat the derivation of formu­
las (16)-(19) but with exchange interaction taken 
into account. If the spin of the perturbing atom is 
S, then the new spin of the system ST can assume 
two values, ST = S + 1/2 and ST = S- 1/2 (with 
S ""'0). The relative number of collisions with given 
value of the total spin ST is C(ST) 
= (2ST + 1)/2(2S + 1). Accordingly, in formulas 
(16)-(19), when account is taken of the exchange 
interaction, we must make the substitution 

fqe 1(0)-+ 2; C(ST)f~~T (0), 
ST 

sin2 o1-+ 2; C(ST)sin2 6zsT, 
ST 

sin2b1-+ 2; C(ST)sin26zsT' 
ST 

(20) 

(21) 

(22) 

where ozsT are the scattering phase shifts, cal­
culated for the state of the system with specified 
value of the total spin ST, with exchange taken into 
account. 

States with large values of the principal quan­
tum number n are hydrogenlike. We can therefore 
use for G(f31 q) the well known expressions for 
hydrogen functions in the momentum representation 
in terms of Gegenbauer polynomials ~7] • For the 
transitions of interest to us, 2S-2P (the alkaline­
atom absorption series), we obtain 

n ( 1 )2 W ( q) = - [ ( n + 1) sin ( n - 1) <p 
2n(n2 - 1) nqao 

-(n-1)sin(n+ 1)<p)2ao, (23) 

(24) 

The function W(q) has n maxima, of which n/2 are 
located in the region 0 < q < (na0r 1• In this region 
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the envelope behaves approximately like 
(1 + n2q2a~r2 • When q » (na0r 1, W(q) decreases 
monotonically: 

_ 27 (n2-f)n3 (_1_)8 
W(q)-- . 

3 :n: '\nqao 

Thus, the main contribution to the integral with 
respect to q in (16)-(19) is made by the region 
o < q < (na0r 1 • 

(25) 

If n is so large that the principal role in this 
region is played by a-scattering and if in addition 
q-1 sin 20 0 differs little from its limiting value 

. ( 1 . ) 6o v <Yo hm - sm 2bo = -
1

, I -, 
q-oq uo :n: 

(26) 

then, by taking this quantity outside the integral 
sign in (19), we obtain 

1i - 6o , 
~p = m l':n:cro T"6oT !v' (27) 

which coincides with (1). 
Inasmuch as qa (q)-- 0 when q-- 0, we get 

Ysc « t.8 c in the region where (1) and (27) are 
valid. Outside this region, in accordance with (18) 
and (19), Ysc and t.8 c have in general the same 
order of magnitude. 

Let us ascertain now the conditions for the ap­
plicability of the approximation used above when 
considering the scattering effect. 

The impact approximation in the theory of 
broadening of spectral lines is applicable in those 
cases when the duration t.r of the collisions that 
make the greatest contribution to the broadening 
is small compared with the average time between 
collisions. Since the only interactions responsible 
for the broadening due to the scattering effect are 
those between the perturbing particles and the 
valence electron, which at large distances are of 
the form U(p) ~ ae2p-4l2, we must set t.T equal to 
Pelve, where 

(28) 

is the effective radius of interaction between the 
electron and the neutral perturbing particle[B], 
ve = tiqlm:::::: tiqofmn. Therefore t.TIT:::::: p~N = Xe• 
and the condition t.T IT « 1 takes the form 

:n: 
X =,-anN~ 1. 

e '! 
(29) 

In order for formulas (18) and (19) to be valid it is 
also necessary to satisfy the condition Pe « aon2, 

that is, 

(30) 

When this condition is satisfied in the region of 
interaction between the electron and the perturbing 
particle, the potential V(r) produced by the atomic 
remainder remains practically unchanged, thus 
justifying the use of the impulse approximation. 

We have also implied tacitly above that the 
inelastic collisions make no appreciable contribu­
tion to the broadening. An elementary estimate of 
the value of energy t.E transferred to an electron 
colliding with a neutral atom shows that t.E does 
not exceed Ryln3 upton ~ 50. This justifies the 
neglect of inelastic collisions. 

3. Let us proceed to discuss the effect of polar­
ization due to the interaction between the perturbing 
particles and the atomic remainder. This interac­
tion leads to a shift in the frequency of the atomic 
oscillator [1•2•5]: 

x(t) =- 2~ ez ~ [Ri(t)]-\ (31) 
t 

where Ri is the distance to the i-th perturbing par­
ticle. The most general analysis of the problem of 
the distribution of the intensity I(w) in the spec­
trum of such an oscillator, with allowance for the 
thermal motion, is contained in the paper by 
Anderson and Talman [a] (see also [5]). The results 
of this paper show that within the limits of the ac­
curacy on which one can generally count in the 
framework of the model of (31), the contour of the 
line can be constructed from the results of the im­
pact and statistical approximations [a]. 

If the dimensionless parameter is 

Xi = piW = (~a :~N) ~ 1, (32) 

where V is the average velocity of the perturbing 
particles, then the central part of the line 

I w- Wo I ~ Q = (21iV4 I ae2) 'is (33) 

is described by a dispersion contour with width 
Yp and shift t.p, defined by the formulas 

'Yp = 11.4(ae2 / 2h)''•V'I•N, ~P = -l'3 Vp/ 2. (34) 

In the long-wave wing of the line ( (w - w 0) < 0 and 
lw- w 0 1 » Q) the dispersion distribution is re­
placed by the statistical distribution 

I(w) ~ nN(ae2 I 2/i)'"l (w- wo) 1-'1•. (35) 

The statistical wing is located in the long-wave 
region because of the sign of the frequency shift in 
(31). The intermediate region I w - w 0 I ~ Q can be 
obtained by interpolating the dispersion contour 
and the distribution (35). 

On the other hand, if Xi » 1, then the statistical 
approximation is applicable to the entire contour, 
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and we have 
00 

/(w) = .!_ ~ exp(-Ng't'l•)cos(~wt + Ng"t'l•)dt, 
:rto 

4:rt ( ae2 \ 'I• ( 1 ) g" + ig' =- -) r - ein!B, 
3 \ 2tl 4 

(36) 

when (w- w 0) < 0 and I(w) = 0 when ~w = (w- w 0) 

> 0 [ 4, 5]. In the case (36) the width and the absolute 
magnitude of the shift are approximately equal to 
10 N413ae2/n[5J. We note that the ratio of this quan­
tity to l~p I as given by (34) is 1.6 xf3• 

When lw- w 0 1 » 10 N413ae2/n, formula (36) 
goes over into (35). When lw- w 0 1 :S 10 N413 ae2/fi 
we can obtain 

V2 9 v'/, [ 1 ( 3v )3] I w ~ -- exp --
( ) n 16 (wo-w)'" . 4 4(wo-w) ' 

ae2 ( 4 ( 1 ) ) 'f, v=-- -nf - N . 
2/i \3 4 

(37) 

When Xi « 1 the polarization broadening is deter­
mined almost entirely by the interaction of the 
atomic remainder with the particles which enter 
the sphere with radius Pi= (rrae2/4nV) 113• On the 
other hand, when Xi » 1 the main contribution to 
the intensity distribution (36) in the region of the 
maximum is given by particles at a distance of the 
order of R = (3/ 4N)1/3• If condition (30) is satisfied, 
and also if 

(38) 

or 

(39) 

then the broadening due to the scattering effect and 
the polarization effect are statistically indepen­
dent 4 l. Therefore the resultant contour can be 
obtained by convolution of the intensity distribu­
tions from the scattering and polarization effects. 

When Xi « 1 the central part of the line is des­
cribed by a dispersion formula with width y and 
shift of the maximum ~. equal to 

Y = Ysc + '\'p• ~ = ~sc + ~p. (40) 

4. Let us estimate the values of the parameters 
Xe and Xi for typical experimental conditions. 
Inasmuch as Xe « Xi, the main interest is attached 
to the parameter Xi· 

For noble gases, the polarizability a is of the 
order of 1.5 x 10-24 cm3• Therefore at velocities 
V ~ 5 x 104 em/sec, corresponding to the ordinary 

4 llnasmuch as pi>> pe, condition (30) is automatically 
ensured by the second inequality of (38). 

experimental conditions, Xi ~ 0.5 x 10-20 N. Thus, 
Xi« 1 up to pressures of the order of atmospheric. 
However, if the inequality Xi « 1 is satisfied with 
a small margin, then the polarization effect yields 
a noticeably asymmetrical distribution of the inten­
sity, since Yp/Q = (22.8/rr)Xi· For example, when 
Xi = 5 x 10-2 we get Yp/Q = 0.35 and consequently 
the statistical wing becomes noticeable at a dis­
tance of 2-3 line widths from the intensity maxi­
mum. 

For the atoms of alkaline elements a ~ 50 
x 10-24 cm 3 and Xi ~ 25 x 10-20 N. In this case 
Xi « 1 up toN :s 5 x 1017 cm-3• Thus, in the pres­
sure region of greatest interest for experiments 
Xi « 1 and the contribution of the polarization ef­
fect to the width and the shift of the line can be 
estimated from (34), while the total width and the 
shift can be calculated from ( 40). 

Let us consider by way of an example the broad­
ening and the shift of the higher-order terms of 
the principal series of absorption of Na in an at­
mosphere of Ar, experimentally investigated by 
Fuchtbauer and Schulz[1o]. Under the experimental 
conditions the argon concentration was 2. 7 
x 1019 cm-3 at T = 762°K. The polarizability of the 
argon is a = 1.63 x 1024 cm3• Therefore Xi= 0.12, 
Pi= 1.64 x 10-7 em, and Yp/Q = 0.87. In accordance 
with (38), the experimental data can be compared 
with the formulas obtained above for n2 > 300, that 
is, for n ;( 17. Although the ratio Yp/Q is not small 
in this case, it follows from the concrete form of 
the polarization component of the contour that the 
statistical wing has practically no effect on the 
width or on the shift. We can therefore use formula 
(40) to calculate y and ~. and formulas (34) to cal­
culate Yp and ~p· In cm-1 units we have 

Yp = 2.1, ~p= 1.82. 

To determine Ysc and ~sc• we calculated the scat­
tering phase shifts 6 0, 6 1, and 6 2 for an electron 
scattered by an argon atom. The calculations took 
into account the exchange and the polarization of 
the argon atom by the electron in the adiabatic ap­
proximation. The wave functions of the argon atom 
were specified in the Slater approximation: 

(41) 

The potential of the atomic remainder can be 
calculated with the aid of functions (41) in analytic 
form only for integer and half-integer values of the 
parameters J.1.. In choosing J.1. and {3 for the states 
1s, 2s, and 2p, we used the Slater prescription [11 ]: 

~lt., = 1, [l2p = ~12., = 2, 

~Is = 17.7, ~2s = ~2p = 6.9:3. 
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Phases of elastic scattering by an argon 
atom 

8, I 8, I 
8, 

I 8, 

k 

133p = o.n fl311 = 0.917 

0.01 31591 

I 
- - 31551 

0.02 31751 - - 31671 
0.03 31871 - - 31761 
0 04 31981 290-2 460-• 31831 
0.08 32171 920-2 200-2 3191 1 
0.12 32071 150-1 470-2 31741 
0.16 31771 175-1 850-2 31391 
0.20 31331 145-1 136-1 30921 
0.24 30791 500-2 203-1 30361 
0.28 30171 114-1 293-1 29731 

0.32 29501 344-1 409-1 29061 

0.36 28801 632-1 561-1 28361 
0.40 28071 970-1 101° 27641 

Remark. k- momentum of incident electron in atomic 

units. The numbers are in the form of decimal fractions 
and powers of 10, for example, 290"2 = 0.290 X 10"2 , 

For the 3s and 3p states, the parameters J..L and 
{3 were chosen by comparing (41) with the calcula­
tions of the wave functions of argon by the Hartree­
Fock method[12•13J. Inasmuch as {3 = ..fi", where E 

is the energy of the state and J..L = f3rmax (rmax is 
the point corresponding to the maximum of the 
function (41)), we chose for J..L the integer or half­
integer closest to 'hrmax• and then determined 
{3 = J..Lirmax· With such a choice of the parameters 
{3 and J..L, the maxima of the function (41) and of the 
function obtained from the Hartree-Fock calcula­
tions occur at identical positions. We note that the 
functions of the 3s and 3p states given in [iS] have 
a rather gently sloping maximum. Therefore there 
is some leeway in the determination of the para­
meters J..L and {3. The final criterion for the choice 
of the parameters was a comparison of the calcula­
ted elastic scattering cross sections with those ob­
tained experimentally. The calculations were made 
with parameters 1-!ss = 2, 1-!sp = 1, f3ss = 1. 75 and 
two values of the parameter f3sp = 0.9 and f3sp 

A,cm-1 

IZ 

t(J 

11 

6 

4 

zt 
I 

4 

I 
z 

-:~=::::'====~J= ,,.,...... 
,' --1 

j I ! I I I I I 

rJ 12 t5 zo 24 2t! JZ Jon 

FIG. 1. Shift of the higher terms of the principal series 
of Na absorption in an atomosphere of argon: Curve 1- ex­
perimental values [' 0]; 2- calculation corresponding to 
{33p = 0.9; 3-calculation corresponding to {33p = 0.917; 
4- calculation with account of one phase 80 corresponding 
to {33p = 0.917. 

Y,cm" 1 

tO 

11 

6 

2 

r\ \ 
\ 

\~~ 
"J 

4 11 !Z 16' 20 24 N n 

FIG. 2. Width of higher terms of principal series of ab­
sorption of Na in an argon atmosphere: 1- experimental 
data of [' 0]; 2- calculation corresponding to {33 p = 0.9; 
3- calculation corresponding to {33 p = 0. 917. 

= 0.917. The scattering phase shifts 6z were found 
by numerically solving the corresponding integra­
differential equations. The polarization potential 
was assumed equal to -ae2/2(r2 + rij) 2, where a is 
the polarizability of the argon atom and r 0 = 0.8 
x 10-8 em. When the parameter f3sp is varied 
(f3sp = 0.9 and f3sp = 0.917), the phases 61 and 62 
remain practically unchanged, so that the table 
lists the·values 60, 61, and 62 for f3sp = 0.9, and the 
value of the phase 6 0 for the case {3 sp = 0. 917. The 
values of y sc and 6sc were obtained with the aid of 
formulas (18) and (22). 

Figures 1 and 2 show the results of the calcula­
tion of y = Ysc + 'Yp and 6 = 6sc + 6p, and also 
the experimental results. We note that, in accord­
ance with a remark made by Unsold [l4], with 
reference to a private communication from 
Fuchtbauer, the experimental values of y are re­
duced by 1.7 cm-1• 5l 

Figure 3 shows a comparison of the experimen­
tal data of[15J with the effective cross section for 
the scattering of an electron by an argon atom, 
calculated in the same approximation as 6sc and 

'Ysc· 
It can be seen from Figs. 1 and 2 that the calcu-

lated values of 6 andy agree well with the experi­
mental ones, and that the calculation of the shift 6 
is quite sensitive to the approximation employed. 
A relatively small change in the parameter {3 sp 
changes 6 by approximately 20 per cent. Com­
parison of curves 2 and 3 shows that scattering 
with l "'- 0 (phases 61 and 62) plays a noticeable role 
in this case. Good agreement is obtained between 
calculation and experiment for the elastic-scatter­
ing cross section at the same values of the scatter­
ing phases (Fig. 3). Thus, comparison of the cal-

S)unsold [14] does not indicate the cause of this additional 
broadening. Estimates of the broadening due to the interaction 
of Na atoms with other Na atoms give a value of y which is 
considerably smaller than 1. 7 em~'. Apparently the additional 
broadening is connected with self-absorption. 
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FIG. 3. Effective cross section for elastic scattering 
of electrons by an argon atom: Curve 1- experimental 
data (point corresponding to the lowest energy of the 
incident electron - cross section for momentum trans­
fer, the remaining points- total cross sections for elas­
tic scattering of an electron by an argon atom); Curve 
2- calculation corresponding to {33p = 0. 9; Curve 3- cal­
culation corresponding to {3,p = 0.917. 

culated and experimental values of y and .6. makes 
it possible to monitor the quality of the scattering 
phase shift calculation. 

We are grateful to L. A. Va1nshte1n for an 
evaluation of the work. 
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