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A method is developed for determining the cross sections for multiquantum bremsstrahlung 
and absorption in the presence of a strong electromagnetic field. Bremsstrahlung due to the 
scattering by a Coulomb potential is considered in detail. In the extreme case of small fields, 
the results are identical with the familiar perturbation-theory formulas. Asymptotic expres
sions are found for the bremsstrahlung cross sections in strong fields. 

1. The classical problem of finding t4e cross sec
tion from bremsstrahlung or absorption is usually 
solved in the first Born approximation in the scat
terer potential and in the first perturbation-theory 
approximation in the electromagnetic field. [1 ,2] 

For scattering in a Coulomb field there is a known 
solution which is not connected with the use of the 
Born approximation [3J. However, a more exact 
account of the Coulomb field introduces no appre
ciable changes in the result (see, for example, [4]). 

Perturbation theory yields in practice only the 
probability of radiation (absorption) of a small 
number of quanta, and presupposes that the elec
tromagnetic field is weak. The probabilities of the 
multiquantum processes are then small, so that 
perturbation theory gives satisfactory results. 

At the present time, the development of methods 
for generating high-power laser radiation has made 
it possible to obtain exact solutions of many class
ical problems involving the interaction between an 
electromagnetic field and matter. In particular, the 
problem of the bremsstrahlung effect in a strong 
radiation field has become quite timely. Its prac
tical interest is connected primarily with the fact 
that experiments were recently realized in which 
breakdown was produced in a gas by a focused 
laser beam. [5-a] In the theoretical analysis of the 
process of formation of the electron cascade [S-11] 

it is assumed that the acceleration of the electron 
is connected essentially with the single-quantum 
bremsstrahlung absorption. It is essential, how
ever, to estimate the relative values of the cross 
sections of multiquantum processes at threshold 
fields. 

The first attempt at finding the probabilities of 
multiquantum bremsstrahlung absorption or emis
sion was made in [12 ]. However, the analysis in 
that paper is valid essentially only for a weak field, 

and the probabilities of the n-quantum processes 
are exaggerated by a factor (clv)2n. 

The scattering of electrons by ions in the pres
ence of a strong field was considered by Rand. [13 ] 

However, his solution method is not at all suitable 
for the problem and does not make it possible to 
calculate the cross sections for multiquantum 
bremsstrahlung emission or absorption. He car
ries through to conclusion only the calculations of 
the total cross section for the absorption of elec
tromagnetic energy by an electron scattered by a 
Coulomb potential, and furthermore for only one 
particular case. 

We develop in this paper a method which makes 
it possible to determine directly the cross sections 
of multiquantum induced emission and absorption 
when electrons are scattered by arbitrary objects 
in the presence of a strong electromagnetic field. 

2. The behavior of an electron in an alternating 
electromagnetic field which does not depend on the 
spatial coordinates is well known. If A(t) is the 
vector potential of the electromagnetic field, then 
the wave functions of the electron are 

1 { i [ C (p-eA ('r) 1 c)2 ]} 
'¥ P = -(2:rrJi)'h exp T pr - J 2m d-e · 

0 

(1) 
We shall assume henceforth that the field is mono
chromatic and therefore A(t) = - w-1cE · sin wt. The 
energy of the electron in such a state oscillates 
about some mean value 

(H)= p2 I 2m+ (e 2 I 2mc2)A2 

(the bar denotes time averaging). Therefore the 
transition from the state ~p into the state ~p' is a 
transition in which the average energy changes by 
(p ' 2 - p 2 )I 2m. The spontaneous transitions can 
always be neglected compared with the induced 
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transitions, and consequently the probability of the 
transition~ - ~'with (p'2 - p 2 )/2m =±nnw deter
mines the probability of absorption (emission) of 
n quanta of the field. 

We determine the probability of transition be
tween the states ~P during scattering by a potential 
V(r). If we confine ourselves to the Born approxi
mation, then the calculation is carried out in ac
cordance with the standard perturbation-theory 
method, where it is necessary to choose the func
tions ~P as the initial functions. As a result we 
find that the transition probability is of the form 

+oo 
w= ~ w<nl, 

n=-oo 

w<n) ~ 6 - nnw . ( p'2- p2 ) 
2m , 

(2) 

The quantity w(n) determines the probability of 
absorption, of In I quanta when n > 0 and the emis
sion probability when n < 0. Going over from 
probability to effective cross sections, we find that 
the cross section for the absorption of n quanta 
(emission of In I quanta when n is negative) is deter
mined by the following expression: 

a<nJ = 2';;:;2:p ~ do I ~ dr V (r) exp { i~}J_ (n-An') r} 12 

X AI n 2 ['y (cos 8o ( 1 - A cos 8) - A sin 8o sin 8 cos cp) ]. (3) 

Here E and w are the intensity and frequency of 
the electromagnetic field, m and v are the mass 
and velocity of the electron, p the density of the 
scattering centers, Jn Bessel functions of order n, 
and do =sine de dq~ the solid-angle element. The 
vectors n and n' are unit vectors in the directions 
of the momenta of the incident and scattered elec
trons. It is assumed further that 

n = {0, 0, 1}, n' = {sin 8 cos cp, sin 0 sin cp, cos 8}. 

eo is the angle between the direction of polarization 
of the electric field E and the vector n. It is as
sumed that the vector E lies in the (xz) plane; 

'A = l'1 + 2ns, s = ftw I mv2, v = evE I nw2 . 

The main parameter which determines the magni
tude of the field E is y. It can be reduced to the 
form (I/10 ) 112, where I= cE 2/8rr is the energy flux 
density of the laser radiation, 10 = cn2w4j 8 rre 2v2 is 
the characteristic flux density. Comparison with 
the results of [1 2] shows that the characteristic 
current density found in that paper differs from 
the foregoing expression by a factor v2jc2• This 
leads to an overestimate of the probability of the 
n-quantum process by a factor (c/v)2n. 

If the velocity of the electron is v ~ 108 em/ sec 
and the frequency of the electromagnetic field is 
~ 3 x 1015 sec-1 (the frequency of a ruby laser), 

then the parameter y becomes of the order of unity 
at fields E ~ 6 x 107 V/cm, that is, at radiation 
fluxes I ~ 5 x 1012 W /cm2• Such fluxes are now 
already attainable in the focus of a laser. However, 
in experiments on the production of breakdown in 
gases, the threshold values of the field correspond 
to a flux density I~ 1010 W/cm2, and consequently 
y « 1. This indicates that the perturbation-theory 
results are perfectly satisfactory for this problem, 
since the cross sections of the many-quantum 
processes are negligibly small (unlike the predic
tions of [t 2] ). This conclusion is confirmed also by 
direct calculations (see formula (12)). 

In the general case formula (3) does not admit 
of further simplification. We shall consider below 
several particular cases, when the expression for 
the effective cross section u{n) assumes a simpler 
form. First, however, we must stop to discuss the 
limits of applicability of the results. The approach 
itself implies the assumption that the electron 
motion is nonrelativistic. Consequently, the condi
tion v/c << 1 must be satisfied. It has also been 
assumed that the electromagnetic field does not 
depend on the spatial coordinates. In other words, 
we are considering only the dipole approximation 
with respect to the field. The possibility of so 
simplifying the problem is connected with the con
dition wx0 / c « 1, where x0 is a characteristic 
length parameter. We must choose x0 to be the 
larger of the quantities v / w (distance covered by 
the electron within one period of field oscillations) 
and eE/mw2 (the amplitude of the electron oscilla
tions in the alternating electromagnetic field). 
Consequently, the following conditions must be 
satisfied simultaneously: 

vIc< 1, vs (vI c) < 1. ( 4) 

We shall henceforth consider in detail the case 
of scattering in a Coulomb field. The condition for 
the applicability of the Born approximation has in 
this case, as is well known, the form 

Ze2 I tzu < 1, (5) 

where Ze is the charge of the ion. 
3. Thus, let us consider the bremsstrahlung 

effect in scattering by a Coulomb potential. In this 
case 

I (inn· } 
.) V(r)explh(n-'An')r dr 

2nfi2 ·Ze2 

-~~-~2-c--.'/.~[-co_s_O- (I + /,2)/2i.[ · 

We introduce the following notation: when n > 0 

(6) 
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<1_n) and a~n) are respectively the cross sections 

for bremsstrahlung absorption and emission of n 
quanta, and a(n) the total cross section for the 

T 
emission of n quanta. We consider the limiting 
cases of large and small values of the parameters 
y and ~-

a) 'Y « 1. In this case we can confine ourselves 
to the first terms of the expansion in a Bessel
function series, so that 

.8nZ2e~pliw ( 'Y )2lnl 1 2n 1" 
a<n>=m2cv3E2(n!)2 2 "i~dc:p~d8sin8 

0 0 

[cos So ( 1 - A cos e) - A sin So sin e cos c:p FIn I 

X (cos 8- (1 + A2)/2A)2 (7) 

When n = 1 this expression coincides with the 
results of Marcuse[2J, where the bremsstrahlung's 
effect was considered in first order of perturbation 
theory. 

Let us consider first the case of slow electrons, 
that is, ~ » 1. In this case there is no radiation, 
and the cross section for the absorption of n quanta 
is given by the expression 

aa(n) = . n -----8nZ2e~p ( e2E2 )n 
m'hc (liw) '''E2 (n! )2n'/, mfiw3 

2" " 

X ~ dc:p ~ d8 sin 8 [cos So cos 8- sin 80 sin 8 cos c:p)2". (8) 
0 0 

Thus, the actual expansion parameter is the 
quantity y2~ = e 2E 2/mtiw3, in accord with the result 
of Rand [G]. Expression (7) contains a dependence 
on the angle 00, but this dependence is quite weak. 
The total cross section for the absorption of one 
and two quanta (with account of second-order terms 
in the expansion of a~1 >) for the angles e0 = 0 and 
00 = rr/2 is of form 

X [ 1 _ ~ ( 1 __ 1 ) e2£2 J 
5 2 -j/2, mfiw3 · 

(9) 

Let us consider now the case of sufficiently fast 
electrons, when n~ « 1. When n = 1, the cross sec
tions can be calculated for arbitrary values of e0• 

As a result of the integrations, allowing for the 
smallness of the parameter ~, we obtain 

(t) 8n2Z2e6p [ 2 
aa,e= 2 li 3 (3cos28o-1)+(1-cos28o)ln-

m vc w 6 

+(3cos2 80 -1)6lni±26·cos2 8o} 

2~n2Z2e6p [ ( 2) ] 
aT<1>= (3cos28o-1) ln- -2cos280 • (10) 

m 3v3cw2 ' 6 

This confirms the deductions of Marcuse [2•4] 

that the induced bremsstrahlung prevails over ab
sorption if 00 = 0, that is, if the incident electrons 
move along the electric-field vector. 

When n > 1, the calculation of the cross sections 
in the case of arbitrary values of e0 does not lead 
to simple expressions. We therefore present 
below only the formulas for small angles I 00 I « 1. 

When n = 2 and 00 = 0 

(2) n2Z2e8pvE2 [ 8 5 26 _ 1 J 
aa,e = m2/i3w7c 3 +2 (26)2 + 3 (26)3 + 8(26)3lnt ' 

" 
27n2Z2e8pE2 ( 1 13 J aT<2> = ln--- . 

m5v5cw4 6 12, 
(11) 

When n > 2 and e0 = 0 we have, accurate to terms 
of higher orders in the small parameter n~, 

a~n>. = 8n2Z2e~pliw (evE rn [--1- + n- 2 n6] 
' m2v3cE2(n!) 2 , /iw2, 2n- 1 - n- 1 2 ' 

8n2Z2e4p/i2w2 n n - 2 ( evE )2n 
aT(n) = - --~-- - (12) 

m3v5cE2 (n!) 2 n- 1 liw2 , · 

When e0 is small the cross sections differ little 
from their values when e0 = 0 

8n2Z2e8pE2 1 
6aT<2> ='O'T<2>(8o)- aT<2>(0) = ·ln-·802. (13) 

m3vc/i2w6 6 

When n > 2 

l'la(n) = a(n) (S ) _ a(n) (O) = 4n2Z2e4pliw (evE )2n 
a, e a, e o a, e m2v3cE2 ( n!) 2 fzw2 

X----+ [ 8n2 2n -1 
2n + 1 - (2n- 3) (n- 1) 

X (-4n3 + 12n2 - 6n -7) n; l·802, 

4n2Z2e4pli2w2 n 2n - 1 
l'laT<n l = - ----=---=-

m3v5cE2 (n!)2 (2n- 3) (n- 1) 

( evE )2n 
X ( -4n3 + 12n2 - 6n - 7) liw2 • 8o2• (14) 

b) y » 1. In this case we use everywhere, 
except in a narrow region of values of the argument, 
the asymptotic representation of the Bessel func
tions. 

Let us consider separately the cases when the 
electrons move along the electric field ( 00 = 0) and 
perpendicular to it ( 00 = rr/2). 

When 00 = 0 the use of the asymptotic values of 
the Bessel function for y » 1 leads to the following 
expressions for the cross sections: 

26n 3Z 2e3pw { 2 } 
aa<nJ= E 3 2 2Inv.+ln[2n6(1+2n6)]+-. (15) 

c n n6 

When n~ :S Y2 

26n3Z2e3pw [ 1 -l'1- 2n6 2. J 
ae(n)= ln---=+-l'1-2n6' 

cE3n2 1 + )'1- 2n6 ns 



BREMSSTRAHLUNG IN A STRONG RADIATION FIELD 847 

26rr3Z2e3pw f 
aT<n> = - cE3n2 121n 'V +In[ ( 1 + 2ns)( 1 + 1'1- 2ns) zl 

+ ~~ (1- 1'1- 2ns) }< o. (16) 

When n~ ~ )12 there is no radiation, so that u~) 

= - u<n), where u<n) is given by (15). 
a a 

We now consider the case when the initial veloc
ity of the electron is perpendicular to the electric 
field, e0 = rr/2. Transformation of the general ex
pression (3) yields for the cross section 

211nZ2e3p/i2w3 I 1 - A I 
a<n>= ---

cE3m2v4 1 + 'A I 
(17) 

1 +'A2 . 
x ( 1 + A.)2( 1- A.)4 ·ln(A.v)' 

and when In I ~ ~ % the number n can be either pos
itive or negative that is, both absorption and emis
sion take place. When In I~ ~ )12 there is no emis
sion, that is, u(n) = 0. 

For fast electrons and sufficiently small n, that 
is, if n~ « 1, this yields 

(18) 

However, this result still does not give grounds for 
assuming that in the case when e0 = rr/2 and ~ « 1 
the induced bremsstrahlung prevails over absorp
tion at large fields. This is connected with the fact 
that at sufficiently large n we always have n~ > )12 
and consequently o{n) = 0 and o{n) = - u(n) < 0. The 

e T a 
sign of the total emission cross section uT = ~ncf;) 

remains undetermined. 
For slow electrons or for large values of 

n(n~ » 1), formula ( 17) leads to the expression 

(19) 

The change in the cross sections for small devia
tions from the angles e0 = 0 and e0 = rr/2 is deter
mined by the second derivatives of the cross sec
tions with respect to e0, since 

(n) jd8 (n) 
( daa, e, T . o) Oo=O = ( daa, e, T/ d8o) Ou=:t/2 = 0. 

+ 2(1 + ns)l'i + 2ns + 2], (20) 

(21) 

+ 2(1 + ns)l'1 + 2n£ + 2]. (22) 

Thus, at angles e0 close to 0 or to rr/2 we have 
2 (n) 

u~'.'~ ( ~- + 118o J ~ CJ~~~. T ( ~) + ~~~)_ ( d2~a, ;· T) · 
. - . . 2 . 2 d8o 0,=,,2 

(n) ("S) = (n) (O)+ (<'l8ol:_(d2CJ~~~.T) 
Ua, e, T u o . - Ua, e, T 2 dS 2 • 

\ 0 I 811=0 

The condition for the second term of the expansions 
to be small compared with the zero-order term 
takes the form I o e0 I « y-2 ln y in all cases, except 

the expansion of u~n) ( e0 ) when e0 is close to zero. 

In this case the less stringent condition I o e0 I « 1 
should be satisfied. 
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