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The mass renormalization of a boson is obtained on the example of the second order polariza­
tion operator for a pseudoscalar theory generalized to a momentum space of constant curva­
ture. It is shown that the mass renormalization leads in this theory to a "smearing out" of 
the particle mass. 

1. INTRODUCTION 

GoL'FAND[1, 2J and Kadyshevski1[3] have con­
sidered a quantum field theory in which the ordi­
nary p-space is replaced by a space of constant 
curvature. The computation of the S-matrix in the 
framework of this theory leads to some specific 
singularities connected with the geometric pecu­
liarities of a p-space of constant curvature. In 
particular, the renormalization procedure is radi­
cally modified in this case. First of all, owing to 
the finite volume of the p-space, all integrals turn 
out to be convergent and hence the renormalizations 
are finite. Second, the renormalization no longer 
reduces to a simple multiplication of the "bare" 
quantities by constant factors (and addition of a 
mass term), as in the ordinary quantum field 
theory, but is a complicated procedure related to 
the solution of integral equations, which in the 
final count leads to a smearing out of the mass. 
(So far we are unable to make a similar affirma­
tion about the coupling constant.) 

In the present note we consider the mass renor­
malization of the meson in pseudoscalar meson 
theory, and show that the mass of the meson is 
"smeared out" by the so called "nondiagonality 
effect." 

The action operator of the pseudoscalar meson 
theory admits a natural generalization to the case 
of a p-space of constant curvature: 

f...= g ~ 'ii (p) <pld (k) 1 q> r 5'¢ (q) cp (k) drJpdrJqdQk. (1.1) 

t, 

p 

FIG. 1 

theory the expression of the matrix element of the 
displacement operators which appear in the vertex 
part of Fig. 1. It has the form 

(1.2) 

Since the displacements do not commute with each 
other, we cannot interchange the places of d0(Z) and 
d0(l1) and cancel d01(Z). This gives rise to a compli­
cated dependence of the vertex on the virtual mo­
mentum l, which no longer allows, as in the usual 
theory, to carry out all the integrations and factor 
out a delta function depending only on the external 
moments. In the usual theory the matrix element 
(1.2) is a delta-function: 

(pI do(l) do(l!) do-1 (l) I q) =: 6(p -l1- q). (1.3) 

Let us now consider ''nondiagonalities'' of the 
second type. Since the coordinates of a space of 
constant curvature can be constructed by means of 
projection from a five-dimensional space as follows: 

P"- = P"- I Po (a= 1, 2, 3, 4), 

(1.4) 

The phenomenon of ''nondiagonality'' is related to the 
properties of the matrix elements of the displacement it is easy to rewrite all expressions in five­
operator (p ld(k) lq) (cf. [2] ). Strictly speaking there dimensional form. In particular we obtain the fol­

lowing expression for a displacement: are two such phenomena. One is a direct conse­
quence of the noncommutativity of the displace­
ments in p-space. We shall not investigate it here. 
We only write down for comparison with the usual 

Q = D0 (L)P =:P- 2L(PL)- 2A(AP) 

+ 4A(AL) (PL). 
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(1.5) 
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FIG. 2 

Regarding this as an equation with respect to L, 
we have two different solutions 

The expression under the Tr sign in (2.1) can be 
transformed as follows: 

{G0PD (L) G~P.D-1 (T)} 

= {(riQ;rl [.D <L> <riQ irl tJ-1 <L> I .D <L> J5-l <Tn 

= {(f;Q;tl (fiQ/)-lfJ (L) tJ-1 (TL. (2. 5) 

L _ P-Q+2A(A(J) 
PQ - (2 ( 1 - (PQ) + 2 (AP) (AQ) )J'fz' (1.6a) Here Qf denotes the vector-propagator 

, P+Q-2A(AQ) 
LPQ = [2 ( 1 + (PQ)- 2 (AP) (AQ)) J'fz 

(1.6b) 

This implies that for any P and Q there exist 
two displacements (motions) D0(LpQ) and D0(LpQ) 
taking P into Q. Therefore the matrix element 
<q ld.o(l) IP) is a sum of two terms 0 : 

< q I ao < t) I P > = { 6 ( z, lpq) + .s < z, Z' pq >}. (1. 7) 

It is the second term in Eq. (1. 7) which gives rise 
to the ''nondiagonality. '' 

2. THE VACUUM POLARIZATION OPERATOR 

Q;' =· (.S;i- (1- m)A;'A/)P/ I (PA'), (2.6) 

where A' is the "displaced" vacuum vector 
(A= (0, 0, 0, 0, 1) ): 

A'= Do(L)A. (2. 7) 

The vacuum polarization operator becomes 

X <piDo(L)Do(T) lp>. (2. 8) 

The matrix element <P I D0(L)D01 (T) I p) can be ob­
tained from ( 1. 7). Replacing there q by n01(T) p we 

The vacuum polarization operator can serve as obtain 
a good illustration of these facts. As indicated in , , 
[ 1] the second order vacuum polarization operator <PIDo(L)Do-l(T) IP> = .S(Z, t) + .S(Z, t'); (2.9) 

of pseudoscala: mesod!na~ics, corresponding t~ wher;_e t~ denotes the quantity ( LJ:>Q )1_/( LJ:>Q )5 for 
the Feynman diagram m Fig. 2, has the expresswn 21 Q = D()1(T)p. 3 \ In five-dimensional notation it has 

(2.1) 
~ 

Here G0 is the fermion propagator which can be ex-
pressed in terms of the five-dimensional vector­
propagator 

Q; = (.S;J- (1- m)A;AJ)PJ I (PA) 

(i,j = 1, ... ,5) 

in the following form 

Govs = (fiQ;)-1. 

(2.2) 

(2.3) 

(The matrices :ri have been introduced by Yu. A. 
Gol 'fand for the construction of spinors in p-spaces 
of constant curvature.) We indicate also the form 
of the spinor part of the displacement operator 

Ds(L) =irs, i = L;fi. (2.4) 

l)ln the states between which the matrix element is taken 
we write d0(l) in place of d(l), i.e. we consider that the spin 
part d8 (l) of the displacement operator has been separated 
(cf.[ 1 ]). 

2 )The symbol Tr denotes the total trace of the operator in­
side the brackets (summation over spin indices and integration 
over p-space). Summation over spin indices only will be denoted 
below as Sp. 

the following form: 
, P- T(PT) 

T = [1- (PT) 2rf, . (2.10) 

It follows from Eq. (2.9) that the expression for 
the vacuum polarization operator (2.1) can be split 
into two parts: a diagonal part D(l, t) and a non­
diagonal one Dn ( l, t): 

II(Z, t) -1D(Z, t) +Dn(l, t)·. (2.11) 

As the radius of curvature of the p-space goes 
to infinity D(Z, t) goes into the vacuum polarization 
operator of the ordinary theory. The quantity 
D(l, t) has been computed by Gol 'fand and is given 
in [1]. In the present paper we compute the non­
diagonal part of the vacuum polarization operator, 
Dn(l, t), and analyze its properties. The trace ap­
pearing in the integrand of (2. 8) is easy to evaluate 
taking into account the commutation relations of the 

3 )We make use alternatively for the momentum vectors of a 
four-dimensional notation and of a five-dimensional projective 
notation. This should not lead to misunderstandings, if one 
remembers that all computations can be carried out on five­
dimensional vectors, and at the end it is necessary to go over 
to four-dimensional ones by means of Eq. (1.4). Since the inte­
gration over virtual momenta is four-dimensional, the delta 
functions must depend only on four-dimensional vectors. 
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rLmatrices: 

(2.12) 

and the relation 

(LT) = (T'T) = 0, (2.13) 

which are consequences of the form of the delta­
function 6(l, t'). Neglecting everywhere in the 
numerators m compared to unity, we obtain 

{ QftLT}- [(PL)2(AL)2 -(PT)2(AT) 2](AT) (AL) 
Sp Q2Q'2 - 8[1-(1-m2) ((PL) (AL)+(PT) (AT)) 2] 

[- (PL)2 + (PT) 2 + (PL)Z(AL )2- (PT)2(AT)2] 

X [1-(1-m2)((PL)(AL)--(PT)(AT)) 2]. 

(2.14) 

For the final calculation of the nondiagonal part 
it remains to find the mode of operation of the 
delta function 6 (l, t '). For integrations over an 
elliptic space the function 6(p, q) is defined as 
usual according to 

~ b(p, q)f(p)dQp = f(q). (2 .15) 

In order to find the way in which 6( Z, t ') acts it 
is convenient to choose such a coordinate system 
in the elliptic space that 6( Z, t ') splits into a prod­
uct of four one-dimensional delta-functions, of 
which only some depend on p. It turns out that a 
certain polar coordinate system satisfies this re­
quirement. Before looking for this system, we 
note that (2.14) implies that the integrand in (2. 8) 
is projectively invariant with respect to the vector 
P, i.e. is not changed if P is replaced by - P. 
Therefore we can go over in the expression for 
Dn(l, t) from an integration over the elliptic space 
to an integration over a spherical space. The inte­
gration will moreover be invariant under five­
dimensional rotations of the vector P. 

Let us now rotate the five-dimensional projec­
tive sphere in such a manner that the 5-vector T 
be carried into the 5-vector of coordinates 
(0, 0, 0, 0, 1) and introduce polar coordinates 
cp, J, ry, p (cf. [2]) with the variation intervals 
0 :s cp :s 27T, 0 :s J, ry, p :s 7T and such that p is 
measured from the direction of the unit 5-vector 
T, and the angles cp, J, ry are in a hyperplane 
which is perpendicular to T and are measured 
from the direction of the vector L. 

We now consider the transformation of the delta 
function into polar coordinates. The integration 
over the spherical p-space is in fact an integration 
over a spherical surface of unit radius in five 
dimensions. Therefore 

~ f(p)b(p,q)dQp = ~ /(p,rJ,tt,c:p)A(p,rJ,ft,c:p)6(p-pq) 

X 6(1]- 'YJq)o('t't- itq) 6(c:p- c:pq) 

X sin3 p sin2 1] sin tt dp d1] dtt dcp 

= f(pq, 'Y]q, ttq, <:pq) = f(q). (2 .16) 

Here Pq· 'Tiq· Jq, CfJq are the polar coordinates of 
the vector q and the function A(p, ry, J, cp) is deter­
mined by the normalization condition for the delta­
function. In order that the integral of the delta 
function be unity, it is necessary to choose 

A (p, 1], tt, c:p) = 1 I sin3 p sin2 1] sin tt. (2.17) 

Then 

6(p, q) =6(p-pq)6('Y]-1]q)·6(tt-ttq)6(c:p-cpq) 

x A (p, 1], it, c:p). (2.18) 

The vector T' in which we are interested has 
the coordinates: 

'Y]T• = 'Y]p, {tT' = ftp, CflT' = Cflp; 

PT' does not depend on the vector p, which is easy 
to see from the expansion of P into T and T' = L 
following from (2.10): 

P =T'(PT') + T(PT). 

There o(Z, t') can be written in the form 

b(l t')= 6(p1'•-pL)O('Y]P-'Y]L)6(ftp-ftL)6(cpp-cpL) 
' sin3 PT· sin2 'Y]P sin itp 

(2 .19) 

In order to bring the expression to a definitive 
form we note that 

PT' =arc cos (T'T) = n I 2, 

therefore 

6 (PT'- pL) = o (pL- rr I 2)· = o (cos PL) = 6 (LT) 

= 6(1 + lt) I (AL) (AT). 

We now have 

' 6(1Jp)6(itp)6(cpp)6(1 + lt) 
0 ( l, t ) = -s-in--=2-1]-T• sin 'frT, (AL) (AT) 

(2.20) 

(2.21) 

(2. 22) 

The integrations with respect to Tip. Jp and qJp 

disappear due to the delta-functions; the remaining 
integral with respect to Pp can be computed. The 
final expression for the kernel of the non-diagonal 
part is as follows: 

2 
Dn(l, t) = e(d+ _ cL) [F(d-)- F(d+)] 6(1 + lt), 

F(d) = (e1- dez + (1 + d)Z e3 )l(d)- 2de3, (2.23) 
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2(1-d) (1-2d)'iz-1 
J(d)= (1-2d)'"ln (l-2d)'i,+1 

(2.24) 

to pseudoeuclidean (physical) square of a four­
vector can be realized by the replacement p2 -- ~ p2. 
All real relations among physical quantities must 
be written for the pseudoeuclidean vectors. It is 
however convenient to reason up to the last mo­
ment in the euclidean metric, and to go over to the 

The following notations have been introduced: pseudoeuclidean form only in the very final expres-

(v2 _ J..t2)[-2 + ~ (J..t2 + v2)] + 4~-tv [~2(pz + v2)- 11''' sion. This results from the eu~lidean formulation 
r4 = 2~ ( 1-t z + vz) 2 - ----·--- • of field theory. In this connectwn we no.te that the 

singularities of the theory are situated m the re­
gion of negative p2 (p2 = - m 2). 

J..t = (AT), v = (AL), 

In the field theory in a p-space of constant 
curvature the renormalized meson mass in the 

(2.25) g2-approximation is the quantity 

We remark that the vectors T and L can be 
interpreted physically as five-dimensional particle 
momenta only in the special coordinate system 
where A= (0, 0, 0, 0, 1). Therefore in the final re­
sult we have to return to this coordinate system. 

3. SECOND ORDER RADIATIVE CORRECTIONS 

Knowing the expression of the vacuum polariza­
tion operator up to second order we can compute 
the Green's operator of the meson in the g2-
approximation, by summing the chain of diagrams 
represented in Fig. 3. The computation reduces to 
the usual summation of a geometric progressionC4J. 
As a result we obtain for the Green's operator the 
expression 

(3.4) 

which is an integral operator. This generalization 
of the expression (3.2) describes the effect of 
smearing out of the meson mass. Introducing a 
notation which is clear from the context 

II(l, t) =·D(l, t) + Dn(l, t) = g2'¥(l2 )8(l, t) 

(3.5) 

we can rewrite our expression in the form 

( [2 + ~2 + g2'Jf (Z2) ) cp (l) 

+ g2 ~ dQt6(1 + lt)<!>(l2, t2)cp(t) = 0. (3.6) 

(3.1) 4. ANALYSIS OF THE INTEGRAL EQUATION 

We note that in distinction from the usual theory, 
the mass renormalization in field theory in a 
p-space of constant curvature is not simply a dis­
placement of the mass, due to virtual pairs. The 
renormalization effect gets considerably more 
complicated because of the nondiagonal terms. 

In order to analyze this effect of "nonlocal" re­
normalization we remember the Klein-Gordon equa­
tion, which in p-space is simply the relativistic 
relation between the squares of energy-momentum 
and mass, and can be considered as a definition of 
the mass. The solution of this equation 

is unique and expresses the relativistic mass­
momentum relation: 

(3.2) 

(3.3) 

We note that the transition from the euclidean 

~+~+~+··· 

FIG. 3 

The equation (3.6) is very complicated. There­
fore, in order to obtain preliminary information 
about the functions cp(l) we consider a model, intro­
ducing a series of simplifications into (3.6). We 
will consider the unknown function cp as a function 
depending only on the square of the momentum 
vector: cp = cp(Z 2). We also assume that the effect 
of the diagonal part ~( Z2) reduces to the usual addi­
tive mass renormalization. (We recall that in the 
theory under consideration all renormalizations 
are finite.) The new meson mass will be denoted 
by the same letter J.t. Since <I>( Z2, t 2 ) is a slowly 
varying function, we assume that the qualitative 
features are not modified by replacing it by a 
constant. 

We now introduce a spherical coordinate system 
t, ry, J, cp with the polar axis along the vector l and 
polar angle ry. The volume element is 

1 t2 sin2 TJ sin{} dTJ dlt dcp dt2 ( 4.1) 
dQt = 2 (1 + t2)''' . 

The delta-function 6(1 + Zt) can be used to reduce 
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the 71-integration. The integral with respect to 71 
in (3.6) can be represented in the form 

~n 'fr(t2- 1/l2) -~i 
6 (1 + Zt)sin2 TJ dTJ = - 6(cos 'fr + (l2t2)-''•) 

0 ( l2t2) .,, 1 

X i1- cos2 TJ d cos TJ 

(4.2) 

We simplify the expression (1- 1/1 2t 2 )112• The 
presence of the factor J.(t2 - 1/1 2) shows that the 
interesting region is only from 1/1 2 to oo. At 1/1 2 

its derivative is infinite but the function vanishes; 
for large t 2 the function converges sufficiently 
rapidly to 1, therefore we can make the replace­
ment 

We now investigate the behavior of the function 
cp(s) near the point s = JJ. 2/4, where the "classical" 
Green's function had a pole. In the system of units 
under consideration we have the estimate p.2 « 1. 
Therefore, in a neighborhood of the point s = - p. 2/4 
Eq. (4.6) becomes 

d2F 1 dF 
dxz +; dx + F(x) = 0, (4.10) 

where the new variable x is defined by 

J.tz xz 
8 + 4 = 4(~-t2/4)''•c2 • 

(4.11) 

Finally, in the neighbor hood of the point s = - JJ. 2 I 4 
we obtain the "distribution" 

(4.12) 

Thus on the hand of a simplified model it has 
(4.3) been shown that the mass renormalization l~ads to 

After all these simplifications our equation re­
duces to 

~ r cp(t)it dt = ( J.t2 s) s (4.4) 
is ~. < 1 + t)''· 4 + , cp < > · 

We use here the notation 

4ng2<I>(l2, t2} = const = c, l2 = s, t2 = t. (4.5) 

This integral equation can be reduced to a dif­
ferential equation. Define the function 

then 

r cp(t)it 
F(s) = J (1 + t)'l• dt, 

8 

cp(s) = _ (1 + s)•!, dF 

is ds 

and the integral equation (4.4) takes the form 

(4.6) 

(4. 7) 

(~+s)(1+s)'l• dF(s) =cF(1/s). (4.8) 
4 ds 

Making the substitution s - 1/ s and introducing 
the expression for F(1/s) from (4.8) we obtain 

( J.t2 +..!..)s(1+1/s)'l•~(( J.t2 +s) (1+s)'l•dF(s)) 
4 s ds 4 ds 

a smearing of the mass in the theory under consid­
eration. Since all our computations were estimates, 
it does not yet make sense to speak about the phys­
ical consequences of the generalized renormaliza­
tion procedure, although one might be tempted to 
connect the mass smearing with the lifetime of the 
particle. 

In conclusion I would like to express my grati­
tude to Yu. A. Gol 'fand for constant interest in this 
work and some remarks. 
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