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Reflection of fast electrons with small energy losses from conducting media is considered. 
The dependence of the electron reflection coefficient on the energy w lost during reflection 
from a semiconductor is determined. 

1. INTRODUCTION 

THE energy spectrum of fast electrons reflected 
from solids consists of a peak of elastically reflec
ted electrons and a certain number of inelastically 
reflected electrons. The width of this peak is ap
proximately 1-3 eV for electrons with energy of 
approximately 1 ke V 1 >. The number of electrons 
that lose an energy larger than the width of the 
elastic-reflection peak depends essentially on the 
material from which the electrons are reflected. 
In the case of dielectrics there are practically no 
electrons reflected with energy loss up to about 
10 eV. To the contrary, in the case of metals one 
observes a noticeable number of almost-elastically 
reflected electrons, this number being practically 
independent of the energy loss if the latter is small. 
These facts can be explained in a natural manner 
by taking account of the fact that the electron can 
lose an energy w in the interval 6-E > w > o E (6-E 
is the width of the forbidden band and o E the width 
of the peak of elastic reflection) only as a result 
of interaction with the electrons of the conduction 
band. 

We investigate in this paper the influence of the 
conduction electrons in a solid on the behavior of 
the coefficient of reflection of electrons as a func
tion of the energy transferred to the target. Be
sides the interaction of the fast electron with the 
lattice and with the conduction electrons, we take 
into account also the interaction between the con
duction electrons themselves. The target consid
ered is an electronic semiconductor, for which the 
electron-electron interaction can be described 
most consistently. This makes it possible to take 
the plasma effects into account in natural fashion. 
In addition, there are grounds for assuming that 
the spectrum of the electrons reflected with an 

1 )In an instrument of the spherical-capacitor type. The au
thor is indebted to A. R. Shul'man and Yu. A. Morozov for 
these data. 
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energy loss of several eV from a metallic target 
is determined by the interaction between the con
duction electrons themselves. For a qualitative 
understanding of the peculiarities of the reflection 
process it is therefore desirable in this case to 
take this interaction into account in a model in 
which the electron-electron interaction is weak. 

2. TRANSITION-PROBABILITY AMPLITUDE IN 
THE PRESENCE OF ELECTRON-LATTICE 
AND ELECTRON-ELECTRON INTERACTIONS 

The Hamiltonian of the medium is represented 
in the form 

H = H 0 + Hr, Ho = L ep·a;·ap· + 2; wkbk+bk. 
p' k 

The interaction of the conduction electrons with one 
another is described by the operator 

H 1 "'' 1~ ~ ~ r = ~2 2.J qllp ap· ap·--q av_c,1 • 

p',p,q 

We introduce the operators Hz and Hi. The opera
tor Hz describes the interaction between the fast 
electron and the lattice; the operator Hi the inter
action between the fast electron and the conduction 
electrons: 

Hi=~ Vqa/::x;,~q:Xpap~q· 
p,q 

The operators a pertain to the fast particles. We 
assume that 

(;::xp, ap+] = 0 [ap, a1,·+]+ = Clpp'· 

The purpose of the investigation is to find the prob
ability of the transition of the fast electron incident 
on the target to the states of reflected electrons. 
This probability is proportional to the current of 
these electrons. 

The probability per unit time of a transition ac
companied by transfer of a momentum q to the 
medium is (c = n = m = e = 1) 

lCq = 2rt I Tq /2 6 (EM-Es-+- fp-q -ep). 
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The indices M and N are characteristics of the 
state of the medium, while E is the energy of the 
fast particle. The transition amplitude Tq is 

Tq = (M, p-qiH;+H11'¥1\r,p). 

The function -.J!N, p is a solution of the Lippmann
Schwinger equation [i]: 

\f't·,p =IN, p) + G (IV, P) [H; +Hz] '¥1\r,p, 

G (N, p) =[EN+ ep-H + ior1 . 

We assume that the energy of the fast electron 
is such that we can confine ourselves to the Born 
approximation with respect to Hi. However, with 
respect to the operator Hz such an approximation 
would be incorrect. The probability of scattering 
of a fast electron in the lattice field is relatively 
large, so that it is necessary to take into account 
possible consecutive collisions with the lattice. 
We therefore represent Tq in the form: 

Tq = T1(q) + T!{q) + Tz(q), 

where 

Tz(q) = (M, p- qiHdN, p), 

and the function IN, p) satisfies the equation 

IN, P"> =IN, p> + c'(N, p)HdN, v>; 
TI(q) = <M, p -q I Hll ¢1\r,p), 

and 1/J"N, P is defined as 

'¥1\r. p = ¢1\r. p + I :N, P"> 

and is a linear function in Hi. The function 1/JN, P' 
satisfies the equation 

¢1¥. p = G (N, p) {H;! "N, p) + Hl¢1¥. p }; 

finally, 

Tz(q) = (M, p- qiH; I.N, p). 
By successively substituting in T1 (q) and T2(q) 

in place of 1/JN, p and IN, p) the right sides of the 
equations for these functions, we obtain an infinite 
sequence of matrix elements. We cut off this series 
by using the following reasoning. The entire series 
corresponds to the rigorous solution of the problem 
with respect to Hz. This solution corresponds to 
the exact single-scattering amplitude and to an ac
count of an infinite number of successive single 
collisions. If the amplitude of the single-scattering 
probability can be obtained by perturbation theory 
with account of a finite number of perturbation
theory terms, then the series can be cut off, since 
the presence of a finite probability of essentially 
inelastic scattering (for example, with excitation 
of deep electronic shells) in the almost-elastic 
scattering problem causes the electron to experi-

ence a finite number of successive collisions until 
it either loses a considerable energy or is returned 
with a small energy loss. Therefore Tq can be 
written in the form 

Tq = Tt(q) + T;(q) + (M, p- q 

X I Hl G (1 +HlJ + HlGHlG + ... ) H; 

+H;GH1 (1 + GH1 + GH1GH1 + ... )IN, p) 

+ (111, p- (j IHlGJJIG ... H/1IIJJH/JH/JHl 

... GH1 1N,p). 

Let us write this more compactly in the form 

Tq = T1(q) + T;(q) + (M, p- qiR1H; + H;R/IN, p) 

+ (M,p- qiQli;Q/IN, p), 

T;(q) = (M, p- qiH;JN, p), (1) 

where Rz, R], Qz, and Q] are operators made up 
of the operators Hz and H. 

3. TOTAL PROBABILITY OF TRANSITION WITH 
MOMENTUM TRANSFER q 

We shall use the indices m, n, and J.J-, v to des
cribe the states of the electronic subsystem and of 
the lattice respectively: (m, J.J-) = M, (n, v) = N. 
Since the amplitude of the electron-electron transi
tion probability 

T; (q) = Vq (~ av·+av·-q.)mn 
p' 

depends only on the momentum transfer and does 
not depend on the momenta of the initial and final 
states of the fast electron separately, we can repre
represent I Tq 1 2 in the form 

IT q 12 =I T;(q, m, n) i2 f2 (q)+l T 1 (q, f.L, v) 12 (1 + 2 Re Ti(O)) 

+ j2j T; (qe, m, n) B~.v(q, q.) 12 , 

qe 

BiJ.v(q, tie)= ~ (f.L, P- (JIQtJTJ, P- q'- qe) 
q', 1] 

X (T],p-q'IQI'Iv,p) + (1-l,p-qiRzlv, p-qe) 

+ (1-l,p-q+qeiR/Iv,p), 

f 2 (q) = 1 + 2 Re [ ~ (v, PI Qll TJ, P- q' -· q) 
1l,q' 

X (TJ, p- q' I Qz' I v, p) + (v, p- q I R1l v, p-q) 

+ (v, pjRz'[v, p)], (2) 

where Ti (O) is the electron-electron zero-angle 
scattering amplitude. The first term in (2) is con
nected with the electron-electron transition with 
account of renormalization of the vertex part due 
to the electron-lattice interaction. The second is 
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connected with the electron-lattice transition with 
a vortex renormalized by electron-electron inter
action. The third term describes a mixed transi
tion, when momentum q is transferred to both the 
lattice and the conduction electrons, the momen
tum transferred to the electrons being qe, and that 
to the lattice q - qe. 

The probability w must be summed in usual 
fashion over all the final states and averaged sta
tistically over the initial states (with statistical 
matrices p (e) and p ( Z) of the electrons and the 
lattice): 

W(q) = ~ Wq(M, N)p<•Jp(l) = 2:rtl'q2 [~ r 2 {v, p, q)pv<l)] 
1n, n, fl.· v v 

X <D1 (q, w) + W1 (q) <D2 (~) + 2:rt ~ Pn<•lp)1l ~ v: 
m, n, ~-'-• v q 8 e 

X I (~ ap•+ ap•-q)mn 12 1 BP·'' {p, q.) 12 6(EM -EN- w). (3) 
p 

The functions <P 1 and <P 2 are defined as follows: 

<D2 (~) = lJ Pn(e) (~) [1 + 2 He T;(O) ]n, 
n 

and w = wp- Ep _ q is the transferred energy. 

(4) 

(5) 

The function <P 1 (q, w) was introduced by 
Larkin [ 2]. He showed that this function is connec
ted with the temperature of the two-particle 
Green's function K(q, w) by the relation 

<Dl(q, w) = Im K(q, w) f :rt(1 + e-Bm), (6) 

K(q, w) being the function K analytically continued 
in the upper half-plane of w, and related with the 
polarization operator II (q, w) as follows: 

R(q, w) = TI(q, w) [1- V(q)TI(q, w)]-1• (7) 

The three terms of which (3) consists will be de
noted by W1 (q), W2(q), and W3(q), respectively. 

4. CONNECTION BETWEEN W3(q) AND THE 
POLARIZATION OPERA TOR 

We can neglect in the energy a-function of (3) 
the energy transferred by the fast electron to the 
lattice, compared with the energy transferred to 
the conduction electrons. This can be done because 
of the relative elasticity of the electron-lattice 
scattering and the finite probability of essentially 
inelastic scattering of the electron. Then W3(q) 
can be written in the form 

(8) 

Taking (6) and (7) into account, we represent (8) in 
the form 

W ( - 2 "\1 V2 L ( ) 1 II ( q., w) 
3 q)- ~ q q. 1 -B Im 1 V II ( ) . (9) 

qe e - e '"' - qe q., (I) 

5. PROBABILITY OF REFLECTION WITH EN
ERGY LOSSw 

The probability W(w) of electron reflection with 
transfer of an energy w to the medium is 

-\ ' d3p' 
W(w)- J W(p, p) -(2 ) 3 • 

(Q) :rt 

The integration is over the states of the electrons 
that are reflected and lose an energy w. The term 
W2 is connected with pure elastic reflection, and 
will not be considered. Let us examine the expres
sion for W3(w): 

l'J/3 (w) =c 2:rt ~ V~ <D1 (q., w) S (p, q.), 
qe e 

S (p, q.) = ~ (~:)'a L (p, q.,p'). (10) 
(!l) ~ 

We go over in (10) from summation to integra
tion. The limits of integration with respect to qe 
can be established by going over to integration in 
the space of the momenta p~ of the final states 
after electron-electron interaction. In this space 
the integral is taken between the limits + 1 > cos ep' 
> -1 with IP~ I = (p2 - 2w)1/ 2• Going back to the 
variables qe, we have (leaving out the factor pre
ceding the integral) 

00 

~ dq.q. ~ dwe W (qe, We) 6 (uJe- w), 
-pqe-q//2 

so that 
2P 

Wa(w) - 01dqeqeVqe2 <Di(qe, w)S(q.). (11) 

We break this integral up into two parts in the 
usual manner-for small and large values of 
momentum transfer. In the region of small qe, 
when w/p < qe « q1, Eq. (11) takes the form 

1 f' d S(q.) I II (qe, w) . (12) 
1-e-B"' J q.~ m 1-4nq-2II(q w) 

wtp c e e, 

Here 

w ~ q12 ~ x2, x2 = 4:rtn.e2j3-1, 

q.2 
Rell(q, w) = n.-2 , 

(I) 

[ {3 ( {!) q. )2] X exp - 2 --q;--2- . 
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Bearing this in mind, we write the integral in (12) 
in the form 

q, 

\ dq e S ( ) Im II ( q e, W) ( 12 ) 
J q,3 qe (w2 -w 2) 2 _Lw"q-"[4nlmii(c7 w)]2 ' a w/p e p 1 e e, 

where wp = (47rne2/m)112 is the plasma frequency. 
At small qe we can neglect the dependence of S 

on qe, so that the contribution of (12) to W3(w) is 
proportional to 

w" -~~~~ clq. ( ~ w2 ) n.S0----- --exp ---- , w =I= (lJp. (13) 
( w2-w.2)2 i'J-' ' 2 q2 

JJ W/JJ t e 

For large momentum transfers, the integral 
with respect to qe takes the form 

2_P dqe [ ~ ' (t) qe )2] 
~-,,S(q.)exp --2(----2- . 
q, q. - q. -

(14) 

The integrand decreases rapidly on both sides of 
the region qe ~ & , because the argument of the 
exponential contains the large quantity - (3w (w/ K2) 

at the lower limit and - (3p2 at the upper limit. 
Therefore only a small region on the integration 
contour, in the vicinity of the point qe = & , is 
important, and (14) is equal to 

(15) 

which does not depend on q1• The sharp maximum 
in the integrand of (14) corresponds to the fact that 
pair collisions of the electrons will be the most 
probable, and the presence of weak interaction be
tween the slow electrons, as expected, will not 
exert a noticeable influence on these collisions. 

It follows from (15) that the main part of W3(w) 
depends on w like w-2, so that we can assume that 
S depends little on w when qe « p. When qe ~ p, 
that is, in large-angle electron-electron scattering, 
the structure of W1 (w) and of the corresponding 
part of W3(w) is such that the contribution of these 
terms to W(w) is proportional to the integral 

(16) 

But this expression does not depend on w at all 
when w is small, and in this sense no assumption 
whatever need be made concerning the behavior of 
S(qe) for large qe. We see from (14) that (16) is a 
small quantity so long as perturbation theory itself 
is valid. The presence of the term (16) is due to 
the fact that all the conduction electrons acquire 
the recoil momentum, and this makes large-angle 
electron-electron scattering possible. 

The integral in (13) is proportional to 
exp [ -(3w2/q1]. Therefore (13) makes a contribution 
equally negligible, compared with (15), as the inte
gration regions in (14) far from qe ""' f2W. Thus, 

when w ;r. Wp we should expect the following de
pendence of W on w: 

(17) 

However, when w ""'wp the plasma term (13) can 
become large. In this case we can no longer 
neglect Im II in the denominator of the integrand in 
(12a). In addition, we must take into account the 
fact that the frequency of the plasma oscillations 
depends on the wave vector, since 

(
q\2' q2\ 

He II ( q., w) = n _ _:. ) ( 1 + 3 --f-;- ) . 
(\) , lj{o)" I 

The integral in (12) takes now the form 

+ Cw"q.-6 8Xp [ _ [3 ( ~ :nr1
; 

C = (2n)3n.Z~(1- e-~w)2, 

(18) 

The integrand has a sharp maximum when w2 - w~ 
= 0 and w 2 - w~ « w~. This occurs when 

Since qmin = w/p, q 0 will lie on the integration 
contour if 

(19) 

(20) 

The integrand at the maximum takes the form 

• 2 2 ' -1 [ 3 0)~ J .SoP,(uJ - Wp )[3Cw .. ] cxp -~- -., --~., . 
2 (J)"- (J)J,-

(21) 

If w 2 - wb « wb, so that q 0 is sufficiently close 
to the lower limit of integration, then the main 
contribution to the integral is made by the section 
of the integration contour close to q 0• With increas
ing qe, the integrand in (18) decreases rapidly, 
and Eq. (18) does not depend on q1 both when q1 

lies in the region w/p « qr « w and when w ~ wp. 
We note that the inequalities that determine q 1 

when w ;r. wp and when w ~ Wp are quite weak and 
are satisfied for all possible values of ne in semi
conductors. 

The estimate (18) shows that when w ~ wp the 
maximum possible contribution to W from plasma 
effects is proportional to 

(22) 

At the same time, when w ~ wp the pair collisions 
make a contribution ~ S0 to W, so that collisions 
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with small momentum transfer turn out to have an 
effect 

[wp2 / (w2 - Wp2) )max ~ ~p2 

times larger than the pair collisions. 

6. CONCLUSION 

(23) 

Thus, the spectrum of the electrons reflected 
with small energy loss is described by formula 
(17). In addition to this monotonic part of the spec
trum, resonance can occur at a frequency close to 
plasma frequency. A resonance of this kind can be 
expected in semiconductors with large carrier 
density. In the opposite case, this peak may 
coalesce in the experiment with the peak of elastic 
reflection, leading to a broadening of the latter 
upon reflection from the conducting crystals, com
pared with the case of reflection from dielectrics, 
when the width of the peak is determined only by 
the energy lost during phonon emission. If wp is 
small and close to the phonon frequencies, addi
tional damping arises, connected with the electron
phonon interaction. This corresponds formally to 
the fact that in this case we cannot neglect in the 6 
function of (3) the change in the lattice energy com
pared with the change in the energy of the elec-

tronic subsystem. The role of multiple collisions 
between the fast electrons and the electronic sub
system is relatively small in semiconductors. A 
simple examination leads to the rather obvious 
conclusion that when wr » 1 (r is the mean free 
time of the fast electron in the target) multiple 
peaks appear with frequencies 2wp, 3wp, etc., and 
some broadening of the resonance lines arises, due 
to the successive collisions with small and large 
momentum transfer. 

~ 
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