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The nonlinear properties of a crystal due to oscillations of the ion lattice are considered. An 
expression is obtained for the third-rank cross-susceptibility tensor by means of the three­
time temperature Green's function technique. In a certain approximation, the cross -suscepti­
bility tensor Xabc ( w, w) turns out to be symmetric with respect to the indices a and b. 

1. In connection with the development of lasers 
which can generate electromagnetic waves of high 
intensity and high monochromaticity, the investi­
gation of the nonlinear properties of crystals be­
comes necessary. The nonlinear properties of a 
crystal can in particular be characterized by the 
expansion of the polarization (the dipole moment 
per unit volume) in powers of the field (see, for 
example, lt,2J) 

Pa(t) = :X:ab(wl)Eb(wl)exp(-iwlt) 

+ :X:abc(Ws, Wl)Eb(ws)Ec(wz) exp [-i(ws+ Wl}t] 

XEd(wr)exp(-i(ws+Wl +wr)t]+... (1) 

Here Pa ( t) are the components of the polariza­
tion vector, Eb ( wz) are the Fourier components 
of the electric field, Xab ( wz) is the ordinary sus­
ceptibility, Xabc ( ws, wz ), Xabcd ( Ws, wz, Wr) are 
the third and fourth rank cross-susceptibility 
tensors. In Eq. (1), summation over repeated in­
dices is assumed. One of the most important 
problems which now arise in solid state physics 
is the calculation of the values of Xabc• Xabcd 
etc., which also characterize the nonlinear prop­
erties of the medium. 

Franken and Ward [3•4] have discussed the role 
of various mechanisms which can make a contri­
bution to the value of Xabc (and, consequently to 
the intensity of production of the second harmonic 
in nonlinear crystals). One of the criteria, on the 
basis of which an estimate is given in one of 
these researches [4] of the contribution of some 
mechanism (electronic or associated with the 
motion of ions), is the satisfaction of the Kleinman 
relations. [5] The essence of these relations is 

that the quantity Xabc is symmetric in the indices 
a and b for a medium without dispersion or ab­
sorption. Experimental data give evidence to the 
fact that in nonlinear crystals which are used for 
the transformation of light with frequency doubling 
the Kleinman relations are satisfied with an ac­
curacy of 5-10%. [s] Inasmuch as the frequencies 
of the electron transitions are large in compari­
son with optical frequencies (at which the experi­
ments were carried out), one does not have to 
take into account dispersion and absorption in the 
analysis of the role of electronic motions. Thus, 
the conclusion is drawn in [4] that the principal 
contribution to Xabc must be made by electronic 
motion. On the other hand, the characteristic 
frequencies of oscillation of the lattice are small 
in comparison with the optical. It then follows 
that the Kleinman conclusions[5J do not apply, 
since dispersion is important here. On the basis 
of this circumstance, Ward and Franken [4] re­
jected the possibility of an important contribution 
of ionic motion to the value of Xabc· It must be 
noted, however, that it has previously been im­
possible to verify the concept that Xabc will not 
be symmetrical in the indices a and b when 
account is taken of the contribution of ionic mo­
tions. And actually, as the calculation given below 
shows, a calculation which takes into account the 
lattice oscillations, the value of Xabc ( w, w) 
which characterizes the transformation of light 
into its second harmonic is seen to be symmetric 
in the indices a and b. 

We now consider further the contribution to 
the tensor Xabc ( ws, wz) associated with the 
oscillations of the crystalline lattice. It is evident 
that this tensor vanishes in the harmonic approxi­
mation, since the medium does not possess non-
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linear properties in this case. Thus the entire 
considered effect is determined by the anharmonic 
oscillations. 

2. The expression for the third-rank cross­
susceptibility tensor Xabc of a quantum mechani­
cal system has the following form:[2J 

Xabc ( w,, coz) = 1h [ Xabc ( w,, ·Wz) + Xacb ( wz, w,)]' (2) 

(i1if2 t t, . 
Xabc (ro,, ffiz) = ----y- ~ dtl ~ dt2 exp {lffi5 (t- t1) 

-co -co 

(3) 

Here xa ( t) is the operator of the dipole moment 
of the lattice in the Heisenberg representation, 
and V is the volume of the crystal. Making use 
of the fact that averaging in (3) takes place with 
the help of the density matrix p (- oo ), which 
corresponds to the stationary state of the crystal, 
we transform the quantity Kabc to the form 

co "' 

Xabc(w,, wz) = (2n)-2 ~ dT1 ~ dTz 

= Kabc ( Ws + ffi[, wz)' 

where Kabc ( ws + wz, wz ) denotes the Fourier 
component of the function Kabc ( T1 r2 ); 

(4) 

Kabc (T!. Tz) = - ( 4n2 / Vli2) 8 (T!) 8 (<z) <( [xa (Ti), Xb (0)], 

Xc(-r2)]>, 

{ 1 for T > 0, 
8(T)=. O for T < 0. (5) 

Thus the problem reduces to the calculation of 
the Fourier components of the three-time tern­
perature retarded Green's function. 

The operators of the dipole moment of the 
lattice are written in the following form: [7 ,s] 

Xa (tt) = ~ M~ (1iNf2ro (0, j))'l· [a~j (Tt) + aoj (tt) 1' 
j 

Xb (0) = 2J Mt (1iNf2ro (0, i))'l• [a~; (0) + aoi (0)], 
i 

= ~M~ (1iNj2ro (0, z))''• (a~z (-t2) + aoz (-t2)]. (6) 
z 

~ + ~ 

Here akj and akj are the Heisenberg creation and 
annihilation operators for a phonon of the j -th 
branch of the oscillation spectrum of a lattice of 
frequency w ( k, j ) and quasimomentum nk; N is 

the number of cells in the crystal, Ml is the pro­

jection on the a axis of the vector Mj: 

Mi = ')1, Epe(p!Oj) (7) 
- imp 
p 

where Ep and mp are the charge and the mass 
of the ion at the lattice site with number p. 
Summation is carried out in the unit cell, and 
e (pI 0 j ) is the eigenvector of the displacement of 
the ion with number p corresponding to a phonon 
of the j -th branch and quasimomentum tik = 0. 

Summation in (6) takes place over the optical 
branches of the lattice oscillations, since the 
values of Mj for the acoustic oscillations 
vanish. [9] This corresponds to the well known 
physical fact that the fundamental contribution to 
infrared absorption is made by the optical 
branches of the lattice oscillations, since there 
arises a variable dipole moment for such oscilla­
tions. 

We also note that the operators a+ and a of 
phonons with k = 0 enter into Eq. (6). This is 
connected with the fact that we do not take into 
account the effects of spatial dispersion. It is not 
difficult to understand that these effects are un­
important in the optical range of electromagnetic 
waves (see also the book of Born and Huang [7] ) • 

After substitution of (6) in (5), the function 
Kabc ( T 1, T 2 ) takes the form 

R 

(2n)2N'h MaiMbiJlf.z 

Kabc(T!,'t2)=-T'fi'/•2iZ ~ fw(z)ro(j)roc(i)I~GClJ, (8) 

where w ( z) = w ( 0, z ), etc., and the functions 
G(l) have the form 

G(l) = 8 (tt) 8 (t2) ([(aoj (TI), a;; (0)], aoi (- t2)]), 
(2) ' + ' ' + G = 8(<t)8(t2)([[aoj('t'J), a0; (0)], aoz (-t2)]), 

Gc3l = 8(tt)8(T2)([[aoi (tt), aoi(O)],ao; (-t2)]), 
(4) ' ' ' . G = 8(tt)8(T2) ([[aoj (tt), ao;(O)], ar: (-t2)J>, 
(5) ' + '+ ' G = 6(tt)6(t2) ([[aoj('tt), ao;(O)], aoz(-t2)]), 
(6) ' + ' ' G = 6 (t1) 8 (t2)([[aoi (t1), aoi (0)], aoz (- t2)]), 
(7) A A+ A 

G =8(tt)6(t2)([[aoj('t't), ao;(O)], aoz(-t2)J>, 

cCB) = 8 (t1) 8 (t2) ([[aoi (t1), doi(O)], a~= (- T2)]). (9) 

To find these quantities, we shall make use of 
a Hamiltonian describing the lattice oscillations 
with account of anharmonism of third order (see, 
for example,[JO] ): 

H ,.., '!: (k ') A +' lJ ,.., V' . . . = LJ nffi J akiaki + 2 . Z.., . kd• k,Jo k,Ja 
kj kth; kz]z; ka]3 

(10) 
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Here 

k1 + kz + ka = 2nK, 

k1 + kz + k3 =I= 2nK, 

where 27rK is any of the vectors of the reciprocal 
lattice, and the coefficients of anharmonism 
VK.d 1k 2hk3h are symmetric in any pair of in-

dices [7•10] and posses the following property: 

We now proceed to find the values of a(Z). We 
first compute G(1) (T 1, T 2 ). For this purpose, we 
carry out differentiation of d 1 l ( T 1, T 2 ) with re­
spect to T 1: 

+ (1 I n)8(Tt)8(Tz) 

where 
(1) A A , ,. 

F k,j,k,j, = 8 ( t1) 8 (12) (I [ ak,j, (t1) ak,j, (t1), a0'"; (0) J ,a0~ (- t2) l ), 

and it is not difficult to obtain the equation 

(14) 

for the function F(! l in the given approximation. 
Making use of the fact that the relation in the 
square bracket on the right hand side of Eq. (14) 
is a single phonon free retarded Green's function 
(see, for example, [HJ), the Fourier transform of 
which has the form 

1 1 
Gz(w) =- , (15) 

2:n: w- w (z) 

we find the Fourier transform of the function F(1 l 
without difficulty, and then, after substitution in 
(13), we also find the Fourier transform of the 
function G <1 >: 

X <[[[doj+(T!),JJ], a~;+(O)], doz+(-Tz)]). (12) GC1l ( W1, Wz) 

Here use is made of the well known relation be­
tween e ( t) and o ( t ) : de I dt = o ( t) and the equa­
tion of motion itidA/dt = [A, H]. From the com­
mutation relations between the creation and an­
nihilation operators, it follows that the first term 
on the right hand side of (10) vanishes. Further­
more, we shall carry. out all calculations with ac­
curacy up to terms of first order in the coeffi­
cients of anharmonism Vkdtk2hk3h. The equation 
for G (t l takes the form (with account of the com­
mutation relations) 

iJGC!J . 1 "" , (tl 
i--=-w(J)G<1l--;;- Li Voikd 1k,j,Fk,;,k,;, (13) 

iJT! 2u k . k . 
1)1 2)2 

Furthermore, making use of the relations (4) and 
(17), we obtain an expression for Kabc ( Ws, wz): 

2-y'ZN'!, ~ 1 .M 'M ( () () ("))'! 
Xabc(Ws, wz) = h'lc F L,j VojOiOz k aJ b 1 cz (!) i (t) z (!) l 2 

ijz 

(w. +wz) (ws + 3w1) + w2 (z)- w2 (i) X ------
[ ( w.+wz) 2-w2 (j)] [wz2-w2 (z)] [ ( ws+wz) 2- ( w (z) +w (i) )2] 

X[(w.+w1) 2 -(w(z)-w(i)) 2]-1. (18) 

We can also find the desired value of X abc ( Ws, wz) 
from the relation (2). It is not difficult to estab­
list the fact that this tensor satisfies the rela-
tion [2, 12] 

1 VojOzOi = ------ -----~,---.---,-.,-----e--n (2:rt) 2 ( Wj + (!) (j) ) ( Wz - W ( Z) ) ( W1 - (!) ( Z) - (J) ( i) ) 

(16) 

We note immediately that the value of V0j ozoi 
differs from zero only for crystals which do not 
possess a center of inversion; for crystals with an 
inversion center, ,\abc is equal to zero in the gen­
eral case. 

Calculation of the other functions of aC l) is 
carried out in the same manner. After some 
simple but somewhat tedious calculation of the 
remaining G(l), by summing them we finally ob­
tain for the Fourier transform of the function 
Kabc ( 7 1, T 2 ) : 

which holds if the frequencies Ws and wz satisfy 
the condition 

(•lr+wl+w,=O (20) 

and there is no absorption in the system. 
We note that the Kleinman relations mentioned 

above follow from (19), (20), as wr, ws, wz- 0. 
(Approach to zero of these frequencies essentially 
means a neglect of dispersion -the condition under 
which the Kleinman relations are satisfied.) 

From what follows we shall now be interested 
in a case of practical importance, in which 

(21) 

Xabc (w,, wz) = Xcba (wr, Ws) = Xbac (ws, wz), (19) In this case, we get the following expression for 
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the third rank cross susceptibility tensor: 

212N'f2 • • 1 

Xabc(ros, wz) = p,o,, V ~ [ro(z)ro(l)w(J))h 
ijz 

For a tensor characterizing the splitting, it 
follows from (22) that 

N'lz 
Xabc(w, w) = ~ [w(z)ro(i)ro(j))'iz 

12 fi'J, v w6 .. 
2JZ 

(22) 

(23) 

It is a consequence of the latter expression 
that the value of Xabc ( w, w) is symmetric in the 
indices a and b (since the quantity V is sym­
metric in any pair of indices). This symmetry is 
formally identical with the Kleinman condition. 
But it must be emphasized that the symmetry in 
the indices a and b in our case holds when dis­
persion is important and, consequently, one of the 
conditions for the applicability of the Kleinman 
relations is not satisfied. 

3. We shall discuss briefly the expressions 
that have been obtained and carry out numerical 
estimates. As was pointed out above (see Sec. I), 
the symmetry of the tensor Xabc in the indices a 
and b is verified by experiment. In our case, 
this symmetry holds upon satisfaction of the con­
dition (21). Thus, for a KDP (KH2P04 ) crystal, 
for which we shall carry out estimates in what 
follows, at frequencies of the ruby laser and for 
frequencies of the lattice v ~ 2800 cm- 1 sym­
metry in a and b will be satisfied with an accu­
racy of the order of 1 O% (the characteristic fre­
quencies of the infrared absorption of the lattice 
in the KDP crystal are given, for example, 
in [t 3J ) . Thus, in this aspect the mechanism of 
nonlinearity under consideration does not contra­
diet the experimental data. 

We now undertake an estimate of the quantity 
Xabc ( w, w) according to Eq. (23) for KDP. The 
quantity Xabc (w, w) can be written in the follow­
ing fashion: 

Xubc(W, w) 

= eW . "5', <D ( 0 0 0 \ 
4w6m'i2V -.. i . I ea(kjOi)eb(kjOj)ec(kjOz). 

1 JZ j Z I 

(24) 

In Eq. (24) i, j, z take on values from 1 to 
3 ( n - 1 ) , where n is the number of ions per 
unit cell. To obtain Eq. (24), the following formu­
las were used:[7- 9] 

( 0 0 0\ 
Vo;ojoz = <D . . 12-'hfi'hN-'Iz[w(i)ro(j)w(z)]-'lz, (25) 

l J z' 

X ea(k jOi)e~(k'jOj)e11 (lc" jOz), (26) 

We note that in the calculation of Xabc ( w, w) 

[Eq. (24)1, we take into account the contribution 
only of the lightest ion (for KDP-the hydrogen 
ion); the mass of this ion is denoted by m with 
the number k. This is associated with the fact 
that the contribution of the lightest ion predom­
inates by reason of the fact that the masses enter 
into the denominator in the coefficients 

M~, M~, M~ (Eq. (7)). Corresponding to this, we 

also set mk = mk' = mk" = m in Eq. (26). 

We carry out a numerical estimate of the value 
of Xabc ( w, w). Here we shall consider only the 
interaction energy of the opposite nearest neigh­
boring ions, which depends on the modulus of the 
distance between the ions, that is, we assume:[7J 

<D(r) = -A/r+Bexp (-r/p)·, 

A= e~a', B =:M'A. (28) 

Here M is the number of nearest neighbors, a' 
is Madelung's constant, p and A are constants in 
the expression for the potential overlap between 
the neighboring opposite ions. 

Using the relations of orthonormality of the 
eigen vectors [7], we assume that 

ea(kjOi) ~ (3n)-'lz. (29) 

In such an estimate, it is not taken into consider­
ation that the different characteristic sites can 
have different signs; this can reduce the value of 
Xabc· As a result, we get the following expres­
sion: 

Xabc ( (1), Ctl )· - (Ne3<D"' (ro) / Vm3w6Hn- 1)3n-3• (30) 

In Eq. (30), r 0 is the equilibrium distance be­
tween the nearest neighboring ions under consid­
eration. 

Assuming that for ionic crystals [7] 

A ~ 10-9 erg, r 0/p ~ 10, a' ~ 1, taking r 0 

~ 10-8 em for KDP for m ~ 1.6 x 10- 24 g at a 
frequency w = 1.78 x 1015 sec-t (neodymium 
laser), we obtain Xabc ( w, w) ~ 10- 10 cgs esu. 

The experimentally measured value of the 
component of the cross susceptibility tensor has 
the following value :[14] 

IXzxy(w, w) I = (3 + 1) ·10-9 CGSE. 

An estimate of the value of Xabc in the infra-
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red region is of interest. As is seen from Eqs. 
(18) and (24), Xabc possesses a large frequency 
dispersion as one goes from the optical range to 
the range of the eigenfrequencies of the lattice 
(the infrared region). Upon further decrease in 
frequency, the value of Xabc begins to depend 
weakly on the frequency and to approach its static 
value. The sharpest increase in Xabc should of 
course be observed in the presence of resonance 
between the frequencies of the external field ws 

and ws + wz and the characteristic frequencies of 
the lattice. Thus, under resonance conditions, 
Eq. ( 30) takes the form 

Ne3<D'" (r0) ( p \ 2 n- 1 
'Xabc(W, w)""" 3 ·10-2 Vm3w'(~w)Z n) ---n-' 

with w - w0 replaced by ~w-the line width of 
the characteristic oscillation of the lattice. In 

(31) 

Eq. (31), p is the number of frequencies of the 
lattice in resonance with the radiation field of 
frequency w. In the region of frequencies ws and 
ws + wz smaller than the characteristic frequen­
cies of the lattice, the estimated expression for 
Xabc has the form 

'Xabc ( W, (i)) 

Ne3<D"'(r0 ) ~~a~_(kj0i)eb2 (kj0j)ec2.(kj0z) . (32) 
Vm3 ijz w2 (i)w2 (j)w2 (z) 

For numerical estimates, we consider the same 
KDP crystal with the eigenfrequencies of the 
order of v ~ 2800 em - 1 (A ~ 3.61J ). Upon a 
change in the wavelength of the external field 
from A = 1.06 f-1. (neodymium laser) to A ""' 3.61J 

the value of Xabc(w, w) increases to 10- 7 cgs 
units. In this case the line width of the lattice is 
taken to be ~w ~ 10+12 sec- 1 • 

In conclusion, we note that there is undoubted 
interest in the behavior of the nonlinear charac­
teristics of the crystals close to the point of 
phase transitions of the second kind. We propose 
in subsequent research to consider this problem 
in more detail. Here, it shall only be noted that 
in connection with the fact that the expressions (2) 
and (18) [with account of (25) for the cross sus­
ceptibility tensor) have no singularities upon ap-

proach to zero of one of the eigenfrequencies of 
the crystal, it is difficult to expect singularities 
in the temperature behavior of Xabc close to 
points of phase transitions of the second kind 
(where, of course, one of the eigenfrequencies of 
the lattice vanishes [15] ) • 

The authors are grateful to Professor V. L. 
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