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For elementary particles the penetrability of any barrier in either direction is strictly the 
same [5]. However, the penetration coefficients for asymmetric barriers in opposite direc­
tions may be very different for composite particles if their energy is sufficient for actual 
excitation of the higher states of internal motion. This effect should manifest itself in various 
atomic and nuclear phenomena. 

1. INTRODUCTION 

THIS paper is a continuation of investigations of 
specific properties of composite particles moving 
in an external field [1 •2 J. Many properties of such 
systems can be studied on the simplest example of 
a one-dimensional three-body problem. For speci­
fic calculations we shall utilize a method whose 
correctness was investigated in [ 3:. 

Taking the internal structure of particles into 
account leads to essential changes in their proper­
ties compared to simple particles. The tunnel 
effect for composite particles turns out to be more 
pronounced (1], and at energies sufficient .for the 
excitation of higher internal states penetration 
symmetry is violated for barriers of nonsymmet­
ric shape. The latter phenomenon may be given the 
following qualitative explanation. 

We consider a potential barrier which falls off 
sharply on the left and varies smoothly on the right 
(for example, the barrier shown in Fig. 1). Let a 
beam of composite particles in their ground state 
be incident on this barrier from the left. The 
kinetic energy of these particles will be E - 8 g 
(E is the total energy, 8g is the energy of the 
ground state of the internal motion of the com­
posite particles). At the left edge of the barrier 
the incident particles will be strongly excited; in 
the excited state the kinetic energy of the center 
of mass turns out to be appreciably lower: E - 8 e 
= E - 8 g - ~E ( 8 e is the energy of the excited 
state for internal motion, ~E = 8 e - 8 g). This 
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FIG. 1 

will lead to a decrease in the penetrability, since 
the excited particles will be mainly reflected. But 
if the particles in their ground state are incident 
on the barrier from the right, then they will begin 
to be excited significantly only when they will have 
traversed practically the whole barrier. In this 
case it is easier for the excited particles to pro­
ceed to the left than to return, and, therefore, the 
possibility of excitation in practice does not make 
the penetration of the barrier more difficult. Thus, 
if the particles are incident on the barrier in their 
ground state the coefficient of transmission from 
the right Dg will be greater than the coefficient of 
transmission from the left D~. 

But if the particles incident on the barrier are 
in an excited state then we have the opposite pic­
ture. For particles incident from the left the inten­
sity of transition to the ground state is large al­
ready at the beginning of the barrier and the added 
increment ~E to the kinetic energy facilitates their 
overcoming the barrier. But particles incident 
from the right are forced to penetrate through the 
whole barrier with a low value of kinetic energy, 
and this strongly reduces the penetrability. 

The arguments given above do not take into ac­
count the interference of waves moving in opposite 
directions. However, they do enable us to predict 
the result qualitatively with a high degree of proba­
bility in the majority of practically interesting 
cases. 

Unfortunately, the complicated nature of the 
three-body problem makes a rigorous analysis of 
this phenomenon very difficult. In the general case 
in order to obtain precise estimates it is necessary 
to carry out the calculations with the aid of an elec­
tronic computer. 

In Sec. 2 the basic equations are given de­
scribing the motion of a composite particle in an 

764 



VIOLATION OF BARRIER PENETRATION SYMMETRY 765 

FIG. 2 

external field, and it is shown that the ratio between 
the coefficients of barrier penetrability in opposite 
directions must depend on the shape of the barrier. 
The energy dependence of the effect under discus­
sion at the threshold of excitation of the composite 
particle is given. In Sec. 3 a discussion of this 
effect is given in the limiting case of small asym­
metry of the barrier. In Sec. 4 we give results of 
calculations by means of an electronic computer 
for a specific potential barrier (cf., Fig. 2). 

2. BASIC EQUATIONS 

The motion of two bound particles with the coor­
dinates x1 and x2 and of masses m 1 and m2 in an 
external field is described by the Schrodinger 
equation 

[ 182 182 ( mzp \ ----- -+ v12(p)-f- v1 R+-...c...___-1 
2M 8R2 2~-t 8p2 mt + mzl 

-f-V2 (R- m1p )Jw(R,p)=E'Jf(R,p), (1) 
m1-f-m2 

where 

M = m1 + mz; .~t = m1m2/ (m1 + m2); 

R = (m1x1 + m2x2) / (mt + m2); 

p = X1 - X2; V12 is the potential for the interaction 
between the two particles; Vi is the potential of the 
external field acting on the i-th particle. 

The wave function 'II for the system can be ex­
panded in terms of the complete set of functions 
~~>n describing the internal motion of the composite 
particle [4J: 

'Jf = ~ CJln(R)<I>n(p), (2) 
n 

where ~~>n satisfy the equation (the dot denotes dif­
ferentiation with respect to p) 

(3) 

For the functions fPn describing the motion of 
the center of mass of the composite particle which 
is in the staten with respect to the internal motion 
we obtain the system of coupled equations: 

CJln"- 2M([g n- E)cpn = ~ Wmn <pm, (4) 
m 

where the mixing coefficients Wmn• characterizing 
the intensity of transitions between the internal 

states of the composite particle under the action 
of an external field have the form 

00 

Wmn(R)=2M~ {Vt-f-V2)<1>m<I>ndp. (5) 

We first consider the case when the energy of 
the particle is insufficient for a real excitation of 
higher internal states: 

E-ftg<fte-ftg(ft.g=ftt; fte =ftn; n~2),(6) 

i.e., the particle can recede to infinity only in the 
ground state, while fPn for n ~ 2 fall off exponen­
tially far from the barrier. The system ( 4) with 
such boundary conditions has two linearly inde­
pendent solutions. 1l We shall show that in this 
case the coefficients of penetrability through the 
barrier in opposite directions are strictly the 
same. 2 > For the two linearly independent solutions 
we choose the solution rp_, describing the case 
when a unit flux of particles in the ground state is 
incident on the potential barrier from the right, and 
rp~. The functions rp1_, fPi- have the asymptotic 
form 

k = -v 2M [ E- [g g -~Vi(- oo) l 
t 

k' = -v 2M [ E- [g g - h Vi ( oo) ] . (7) 

The penetrability coefficient is n- = /A1_i2(k/k'). 
With the aid of the solutions rp_ and rp~ we can 
construct any arbitrary solution of ( 4) which satis­
fies the same boundary conditions which hold for 
fPn (n ~ 2), for example, when a unit flux of parti­
cles in the ground state fP+ is incident on the bar­
rier from the left. The asymptotic form of fPt+ is 
the following: 

R---+oo 

R---+-oo · 

The penetrability coefficient in this case is n+ 
= IA1+ P<k'/k). 

(8) 

In order to construct cp+ with the aid of rp_, rp~ 
we multiply rp_ by- B;_/ At_, we divide rp~ by Ai_ 
and add. We obtain: 

l)At energy sufficient for the excitation of m states of the 
composite particle the number of linearly independent solutions 
with ern for n > m falling off at infinity will be 2m. 

2 )This is a generalization of the proof for simple particles 
to the case of a large number of coupled equations[•]. 
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from which it follows that n+ = n-. 
We now consider the case when the energy of the 

composite particle is such that the latter can re­
cede to infinity in the ground and in the first excited 
states. In this case the system (4) has four linearly 
independent solutions satisfying the condition that 
cpn for n > 2 fall off at infinity. Consequently, with 
the aid of a certain solution and its complex conju­
gate (two solutions) we can no longer construct any 
arbitrary solution for the system. Therefore, in 
this case we do not obtain a unique relation between 
two different processes and the ratio between the 
coefficients for the penetration of the barrier by 
particles moving in opposite directions will depend 
on the specific form of the barrier. 

There exists a more complicated relation be­
tween the processes. For example, with the aid of 
two different solutions of the system and their 
complex conjugates (altogether four solutions) we 
can construct any arbitrary solution satisfying the 
requirement that it be bounded at infinity (E - 8 g 
< s 2 - 8 g). Thus, if we know the solutions for two 
processes, when a beam of particles in only the 
ground or only the first excited state is incident 
from - oo, then with the aid of these solutions (and 
their conjugates) we can describe any other process, 
for example, when the particles are incident on the 
barrier from the right. 

Near the threshold of excitation (above the 
threshold) the penetrability coefficients n: and D~ 
have the following form: 

D! = D ~ + k2S±; D! = k2N±, (10) 

where Sand N are constants, D~ is the coefficient 
of penetrability at the threshold k2 = v' 2M(E - s 2). 

The theory of multichannel processes at the thresh­
old Ls,s] cannot predict the values of the constants 
Sand N, but having measured them experimentally 
or having calculated them on an electronic computer 
for one value of the energy, we can by means of 
formula (10) predict the magnitude of the effect of 
penetrability asymmetry at any other arbitrary 
energy near the threshold: 

D+ - + - . g -Dg=k2(S+-S-); De -De =k2(N+-N-). 

3. THE CASE OF WEAK ASYMMETRY 

The mechanism for the violation of the sym­
metry of the penetrability was qualitatively dis­
cussed in the introduction. A more rigorous argu­
ment can be given in the case of small asymmetry 
of the barriers. 

We assume that Vi in (1) depends so smoothly 
on x that we can neglect transitions between the 
internal states when a composite particle passes 
through it. Then the motion of the composite par­
ticle in the i-th state will be described by the 
equation 

-cp;'' + W;;cp; = (E - [g ;) cp;. (11) 

We consider for each i-th state two solutions 
cpi+ and cpi-, corresponding to particles incident 
on the barrier from the right and from the left; 

(12) 

We now add to the potential barrier a small non­
symmetric perturbation V', which leads to a mixing 
of the states: 

- 'ljl/' + (wii + w;/)'ljl;- (E- it;)'¢;='~ w;/'¢i· (13) 

In the case when composite particles are incident 
on the barrier in the i-th state, the system (1) can 
be represented in the integral form 

R 

'¢n = Cf!n+ ~ Cf!n- ~ Wnm1 '¢m dR 
-oo ~n m 

ao 

+ Cf!n- ~ Cf!n+ ~ Wnm1 '¢m dR + Cn({Jna, 
R ~n m 

(14) 

where ci = 1, en = 0 for n ~ i, while a = +, if the 
particles are incident from the left and a=-, if 
the particles are incident from the right, ~n 
=- iAiki. 

We solve the system (14) by iterations. In the 
first approximation we obtain 

R 

'¢n=Cf!n+ ~ ~- ~ Wnm'CmCf!madR 
-oo n m 

co 

+Cf!n- ~ Cf!n+·]wnm'CmCf!madR + Cn({Jna· 
R ~n m 

(15) 

For the sake of simplicity we consider the case of 
only two equations in (1) corresponding to the 
ground and the first excited states. In the case 
when particles in their ground state are incident 
on the barrier from the left the coefficient Dg has 
in the first approximation of perturbation theory 
the form 

co 2 

D; = 1Ad 2 11+~ cp~~ wu'Cf!HdRI 
-00 

(16) 
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When particles in the ground state are incident 
from the right we have 

(17) 

Dg and Dg differ by the amount 

00 12 -ljoo -~:- w2t'~ 1_dR } JAzJ 2_ (18) 

Similarly we obtain for the excited state 

(19) 

Let w' be different from zero in a region small 
compared to kj"1 near R0, while R0 is situated to the 
right of the barrier. We can then replace in the 
integrands the functions cp by their asymptotic 
values (12). Moreover, we shall take the functions 
cp outside the integrals as varying slowly in the 
region where w' is different from zero: 

+ 2Rc Bze-i(k,+ll2JR,) I AI I 2 
A2 1 

-(1 + JBd 2 + 2 ReB1 e-i(k,+k2lRo) J, 
D~ -D-;, =- JA2/A 1 J 2 (D~ -D~ ). 

(20) 

(20a) 

In order to eliminate the effect of interference 
phenomena mentioned in the introduction, we shall 
average (20) also over an energy interval of such 
width that we can neglect the average of the oscil­
lating quantities 2Re {Bi exp (- i(k1 + k2)R0)}. After 
this we obtain 

( D-e -D~ ) 
<O; . D+g -D-g <1, 

(21) 
since 

4. SPECIFIC MODEL 

For numerical calculations we have chosen the 
potential shown in Fig. 2. From considerations 
given in the Introduction one can predict from the 

outset with a high degree of confidence that parti­
cles incident on this barrier in the ground state, 
just as in the case of the potential in Fig. 1, will 
be able to penetrate the barrier easier when 
moving to the right, while particles incident in an 
excited state will be able to penetrate it easier 
when moving to the left. The potential V12 was 
chosen in the form of an infinite rectangular well 
of width 7!". The calculations were carried out for 
different values of the barrier width. The depend­
ence of the coefficients of penetration through the 
potential barrier (at an energy E = 6.01) on the 
quantity~ = b - a - 7!" is shown in Fig. 3. The 
ratios are: Dg /Dg = 3.5, and D~ /De = 100 - 600. 
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As the total energy E increases the difference 
in the penetrability coefficients in opposite direc­
tions diminishes, which can be easily understood 
from the arguments given in the introduction. 
Figure 3 graphically demonstrates the effect of 
interference on the magnitude of the effect. As the 
barrier width is varied the conditions for the 
interference of waves moving in opposite direc­
tions are altered. This leads to periodic variations 
of the coefficient D. In some cases interference 
leads to a change in the sign of the effect under 
consideration, but on the average the effect is 
predicted correctly. 

It should also be noted that a violation of the 
symmetry of barrier penetrability is also possible 
for simple particles in the case when the external 
field is set up by a system capable of being excited. 

In conclusion we express our gratitude to S. N. 
Sokolov in discussions with whom the idea for the 
present paper originated. 
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