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A general solution of the gravitational equations in vacuum is derived in a synchronous coor­
dinate system, which possesses a simultaneous fictitious singularity reached by all points in 
space at the same time t = 0. 

1. INTRODUCTION 

IN recent papers, E. M. Lifshitz and I. M. Khalat­
nikov[1•2] have considered the question of the 
existence of a time singularity 1 l in the general 
solution of the gravitational equations. The authors 
reached the conclusion that the general solution 
may contain only a fictitious singularity caused by 
the geometric specification of the chosen coordinate 
system, which vanishes as one goes over to another 
system. A solution which contains a physical singu­
larity leading to a real gravitational collapse can 
only be some particular solution which does not 
allow the specification of a complete set of arbi­
trary initial conditions. The investigation was car­
ried out in a synchronous coordinate system in 
which the presence of a singularity is inescapable, 
as is well known. [t] 

A general solution with a fictitious nonsimulta­
neous singularity on the hypersurface 
t = cp(x1, x2, x3) was constructed in [2]. This singu­
larity is reached by different space points at dif­
ferent times. The authors of [ 2] also pointed out 
the possibility of constructing a general solution 
with a simultaneous singularity which is reached 
by all points in space at the same instant t = const. 
The present paper is concerned with an analytic 
construction of such a solution. 

As it turned out, the general solution of the 
vacuum gravitational equations in a synchronous 
system containing a simultaneous singularity has 
an expansion in t whose coefficients cannot contain 
a single arbitrary function of the three space coor­
dinates. The physical three-dimensional arbitrari­
ness appears in this case in the c0efficients of the 

1)The singularity may be in a point, along a line, on a two­
dimensional surface, and in general, on a hypersurface. Here 
the determinant of the matrix of the metric tensor vanishes. 

expansion in one of the space coordinates. The 
reasons for this circumstance are contained in the 
geometrical considerations of [1]; it was pointed 
out there that the singularity in a synchronous 
system arises from the unavoidable 2) intersection 
of the time coordinate lines, which are a family of 
geodesics, on certain hypersurfaces 3l -the analogs 
of the caustics of geometrical optics. When the 
caustic is the hypersurface t = cp(x1, x 2, x 3) we 
obtain a metric with a nonsimultaneous singularity. 

If in the case of a simultaneous singularity the 
caustic also were a hypersurface, viz., the "hyper­
plane'' t = const, then there would be no difference 
in principle between the problems, and the desired 
solution could be found from the solution with a 
nonsimultaneous singularity in which one should 
set cp = const. However, it was shown in [1] that 
in this case the caustic degenerates into a two­
dimensional surface since the hypersurface would 
manifestly contain time-like intervals (as it is tan­
gent to the time lines), which excludes the simul­
taneity of the singularities. It is precisely this 
circumstance which gives rise to the characteristic 
of the solution mentioned earlier. 

If the solution is expanded in a series in powers 
of the time near the point t = t 0, the physical arbi­
trariness in the coefficients of the expansion is 
connected with the character of the manifold 
t = t 0 on which the initial conditions are imposed. 
Expanding the desired solution near the singularity, 
we do not, of course, obtain three-dimensional 
arbitrary functions, since the manifold t = t 0 has 
in this case only two dimensions. In this form, the 

2)This is a consequence of the inequality T 0° - (Yl)T ::;_ 0, 

which always holds in a real world. 

3 )The singular hypersurface is the envelope of the family 
of time lines and touches these in their mutual points of inter­
section. 
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solution can contain only two-dimensional arbitrary 
functions. The dependence on the one remaining 
variable will have a special form which depends 
essentially on the choice of the coordinate system. 
It does not follow from this, however, that such a 
solution will not be general, since it may admit an 
expansion in another variable x near the hyper­
surface x = const which manifestly contains three­
dimensional arbitrary functions. This question is 
discussed in the Conclusion. 

We note also that here we confirm the asser­
tions made in [l] that one of the principal values of 
the metric tensor and the determinant vanish 
quadratically in the time at the singularity and 
that at the singularity the interval reduces to a 
quadratic form of only two differentials (not count­
ing dt). These assertions can also be proved ana­
lytically in a rigorous fashion. 

motion we obtain the metric in the form 

gab = q6ab + g~1l t + g~2t t2 + ... , 
- (3) t3 + (4) 4 + gas - gas ga3 t ... , 

g - t2 + (4) t4 + 33- g33 ... ' (5) 

where q = q(x1, x 2) is a two-dimensional function 
and 6ab is the two-dimensional Kronecker symbol. 
In other words, we can arrange to satisfy the 
conditions 

(0) 
gab= q{),lb, (6) 

(1) 
ga3 =0, (7) 

(2) 
gas= 0, ( 8) 

(2) 
g33 = 1, (9) 

(3) 
gsa= 0. (10) 

Substituting ( 4) in the equations R~ = 0 and 
2. ANALYTIC CONSTRUCTION OF THE SOLUTION R8 = o, we obtain in the leading order in the time 

The gravitational equations in a synchronous 
system can be written in the form 

Ra.r. =Par.+ 1f4'xxa.f> + 1/2Xa.f>- 1/2Xf>y'Xa.v = 0, (1) 

Ra.O = 1/2-K;a. -1/2'X~; f> = 0, (2) 

R0° = 1/2-K + 1/4xa.f>Xf>"' = 0. (3) 

The Greek indices run through 1, 2, 3. The Latin 
indices a, b, c, d, which we shall encounter later 
on, take the values 1 and 2. The semicolon denotes, 
as usual, the covariant derivative, the dot the 
simple time derivative, and the comma the simple 
derivative with respect to the space coordinates. 
All tensor operations are carried out in a three­
dimensional space with the metric gOl/3· Kap de­
notes the three-dimensional tensor 8g a{31 Ot, and 
P ct/3 denotes the three-dimensional Ricci tensor 
constructed from g af3 in analogy to the four­
dimensional one. 

We shall assume that the singularity occurs at 
the instant t = 0, and we shall seek the solution in 
the form of a regular expansion in t near t = 0. 
Recalling what has been said in the introduction on 
the structure of the solution, we shall seek it in 
the form 

(0) + (1) + (2) 2 + gab = gab gab t gab t ·. ·, 

ga3 = g~~ t + g~J t2 + g~~ t3 + ... , 
g33 = g~~1 t2 + gii'ts + g~;1 t4 +.... (4) 

where g~b are functions of the space coordinates. 

Let us now show that one can specialize the system 
of coordinates such, using the remaining arbitrari­
ness in its definition, that, with the equations of 

(1) (2) <I> 1,1- ab 
gas=gaa a(x1,x2 ) ,g<2l, S(o)<l>a<l>b=O, (11) 

where s~~ is the free term in the expansion in the 
time of the matrix sab, the inverse of th.e matrix 
gab• and ~a(x1 , x 2) are arbitrary two-dimensional 
functions; g<2> is the coefficient of t 2 in the expan­
sion of the determinant of g. It is seen from (11) 
that, if one of the ~a is zero, the other also 
vanishes since S~a 1 "' 0 and s~6, "' 0. But we can 
make one of the cl>a vanish by the transformation 
xa =fa (xb) which is allowed by the metric (4). 
Thus we obtain condition (7). 

Now we are still free to make the three-dimen­
sional transformation x3 = f3 (xa), by which we can 
achieve the fulfilment of condition (9). Then the 
equations R~ = 0 and R8 = 0 yield in leading order 

d -g(2,l-o iJx3 a3- ' 

i} (O) 

iJxS I gab I= 0, 

(3) 
g33 = 0. 

(12) 

(13) 

(14) 

Relation (14) agrees with (10), and (12) implies 
that g~2;/ is two-dimensional. This being the case, 
it is easy to see that they can be made to vanish 
by the transformation 

which is admissible. Hence we have achieved the 
fulfilment of (8). 

After this we have still left at our disposal the 
transformations xa = fa("xb), which can be used, as 
we shall see presently, to fulfil condition (6). We 
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introduce the notation 
(0) 

gab= aab, 
(0) 

gab,3 = aab,3 = aab. 

Then the equations Rab = 0 and R33 = 0 in their 
leading orders and relation (13) give the following 
system: 

b b a a 
aa, s = 0, aa ab = 0, aa = 0. (15) 

The raising of the indices is here achieved with the 
help of aab· The most general solution of this sys­
tem has the form 

au = Au + (Au«D11 + A12«D12)Z, 
a12 = A12 + (Au<D21 + A12«D22)Z, 
a22 = A22 + (A1z«D21 + A22«D22)Z. (16) 

Here and in the following, z stands for the coordi­
nate x 3• The functions Aab and 4>~ are two­
dimensional and satisfy the relations 

Au«D21 + A12<l>22 = A22<l>12 + A12<l>11, 

(17) 

It is seen from this that Aab = qoab implies 
4>~ = 0 and hence aab = qOab. But with the trans-

formation xa = fa(xb) we can always reduce the 
form 

dP. = Aab (xi, x2) dxadxb 

to the form dl2 = q(dxl + dx~), i.e., obtain Aab 
= qoab· Thus we see that we can also satisfy 
condition (6). 

Thus we shall seek the solution in the form (5), 
and no transformations containing two-dimensional, 
let alone three-dimensional functions remain. This 
means that the entire arbitrariness in the metric 
(5) will be physical. Of the equations (1) let us 
first of all consider the equations Rab = 0. Instead 
of these, it is more convenient to solve the equa­
tions Rab = 0, where Rab = 2Rab /g33, since the 
latter are solved with respect to the highest deriv­
atives of gab in the coordinate x 3• Substituting (5) 
in Rab leads to the expansion 

- - -(1) -(2) 2 
Rab - Rab t + Rab t + ... , 

and the corresponding calculations show that the 
equations R.<:J = 0 for k = 1, 2, 3, ... have the 
form 

(It) (It) (k) 
gab, 33- k2gab -'~!lab = 0, (18) 

where the functions ¢<:J are constructed from the 

following components: 

(1) (2) (IHJ 
gab, gab • • •, gab ·, q; (~ (3) (It) (19) grzs, grz3, ... , gcz3. 

This implies that for given ga3 the functions 
¢~~ in Eqs. (18) are free terms independent of 

g~~ , and the solutions of the equations have the 

form 

g~~> =I])~~) (x1, x2) ekz + F~~> (x1, x2) e-kz + j~~>, (20) 

where the first two terms are the solutions of the 
corresponding homogeneous equations, where 
4> <:J and Fi~ are arbitrary two-dimensional func-

tions and j ~~ are particular solutions of the inho­

mogeneous equations which are completely deter­
mined by the quantities ¢~~, i.e., the functions (19). 

This means that j ~~ contains a two-dimensional 

arbitrariness through 4> ~Y} and F~YJ up to and 

including the order k- 1, but not higher. Substi­
tuting the metric (5) in the equations Ra3 = 0, we 
obtain the expansion where we substitute in Raa 
the expressions for the components gab· 

(1) (2) 
Rrzs = RrzS t + Rrz3 t2 + ... , 

If the equations R~ are written down explicitly, 
one sees easily that they completely determine all 
g~~ in terms of 4>iYJ and F~Y}, and no new arbi-

trariness is introduced. For clarity, we write 
down the whole system of tensor equations in the 
leading orders in the time, viz., Rab = 0 in the 
orders t-1 and t0, Raa = 0 in the order t 1, and 
R 33 = 0 in the orders t1 and t 2• We introduce the 
notation 

(1) (2) (3) (i) 
gab= bab, gab= Cab, gas= 'I!Ja, ggg = W, 

Cab, 3 = 'I'Jab. 

Raising and lowering of indices and covariant dif­
ferentiation are carried out with the help of g~~ 

= qoab· Then these equations take the form 

(Rab, t-1) bab, 33- bab = 0, (Rab, t 0) Cab, 33- 4Cab 

(R3a, t1) 'lila+ 1/3~~; c- 1/s~; a= 0, 

(R33, t1) b, 33- b = 0, (R33, t2) ro + 1/3c 

- 1/ab~b~- 1/12~·a~~- 1/a(TJ- b~~~), 3 = 0. (21) 

Here {3 = {3~, c = ca, etc., and Dab is the two­

dimensional Ricci tensor corresponding to g:ti· 
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The equation R 33 = 0 in order t 1 is a consequence 
of Rab = 0. The remaining equations have the same 
structure, as was shown above, with j~~ = 0. 

Thus the solution can be written in the form 
00 

gab= q6ab + ,~ t" [<!>~~ (x1, x2)e"z + F~~ (x1, x2) e-l<z + j~~>], 
1<=1 

00 

g33 = t2 + ~ t"g~~>. (22) 
It=~ 

We must now satisfy the equations R~ = 0 and 
R~ = 0 in all remaining orders besides those con­
sidered in (12) to (14). For this purpose we take 
recourse to the Bianchi identity, which for Rap= 0 

can be written in the form 

1 . g ga. 1 1 33 
-B + -B + -'-Ma.~Dp- -M33D3 3--M 3 D3 2 ·4g ga g · g • 

1-- g (Ma.~D~) ,a. == 0, (23) 

• g,a. 1 
Da.+-B--Ba. == 0. 4g 2 ' 

(24) 

Here Ma.{3 are the minors corresponding to the 
elements ga.{:J· The bar over the last term in (23) 
indicates that in the summation the term with 
a. = fJ = 3 is to be omitted, since it has already 
been written down explicitly. 

It is easy to see that for the metric (22) the 
functions entering in the identity have the following 
expansions: 

B = B<1l t + B<2>t2 + ... , Da. = D~1lt + D~2lt2 + ... , 
g = q2t2 + g(3)t3 + ... ' g,3 = g~;>p + ... ' 

M33- q2 I M33t + M33 M33 - T (1) • • • , ,3 = (1),3 t + .. · , 

Using these expansions, we find that if the functions 
B m, B (2), ••• , B (k) vanish then the functions 
D<ll n!2l u(k+1) vanish identically [as follows a. ' Q' ' ••• ' a. 

from (24)1 and for B(k+1) and D~k+2) we have the 
identity 

(k + 2)D~"+2>- 1/ 2 B,<;-+1l = 0. (25) 

Here the identity (23) is automatically satisfied up 
to and including the order tk-1, and in order tk it 
yields 

From (25) and (26) we obtain the identity 

B~:t> -(k + 2) 2B<k+1l = 0. 

or 

(27) 

B<l<+1) == y(xl, x2)e<H2)z + A.(xt, x2) ~-(1<+2)z, (28) 

where the functions "Y and A. are constructed from 
<I>~Y} and F~¥} in all orders up to and including 
k + 2. 

It follows from (28) that the vanishing of B(k+1) 
requires two conditions: "Y = 0 and A= 0. Then we 
obtain from (25) n(k+2) = 0, and the process starts 

. a. 
over agam. 

Thus, if we start the preceding discussion with 
k = 0, we find that in order to satisfy the equations 
R~ = 0 and R~ = 0, we must impose two additional 
conditions on the functions <I>~fJ and F~~ in each 

order in the time tk. The explicit form of these 
conditions can be found from a direct determina­
tion of the function B with the metric (22) and set­
ting that equal to zero. Since B contains only time 
derivatives, these relations are algebraic. With the 
notation introduced earlier, we find, for example, 
that the condition B 11 > = 0 reduces to 

(29) 

After solving the system (21) and substituting the 
solution in (29), the latter reduces to 

y(xl, x2)e2z + A.(x1, x2)e-2z = 0, 

where "' and A are determined through <1> 0 > F(l) 
' ab' ab 

<1>(2> Fm q 
ab• ab' · 

We note that the system (21) together with (29) 
is a complete system for the determination of the 
metric in the following approximation: 

gab = q6ab + babt + Cabt2, 

(30) 

We now give the exact general solution of the 
system (21), (29): 

bab = <!>~~ e• + F~~ e-z, 

Cab=<!>~~ e2z + p,}~l e-2z- 1/aflab +1/~(2(!>b~F(1)~ 

+ 2Fb~ <1><1>~- <t><1lF~1t + F<1)(1>~1t), 

:¢a = 1/a ( (F<tl~;c- F~~) e-•- (<D<tl~;e- w<tl ;a) e•], 

w = _t/a(F<t>~w<1l~- F<t)(l>(1l- D); 

(31) 

4<1><2>- <1> <1 >~ <P <1>~ = 0, 4F<2>- F<1l~ p<t>~ = 0. (32) 

(k/2 + 1)B<k+1>- nJ~+2> == o. (26) Here <I> = <I>g, F = F~, D is the two-dimensional 
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scalar curvature, and the tensor operations are 
carried out with the help of qoab· The two-dimen­
sional functions F~f} and 4la~ satisfy (32). These 

relations are additional conditions following from 
(29), and it is due to them that the function w was 
obtained independent of the coordinate z. It should 
also be noted that there are no additional conditions 
for the first order functions F ~~ and ~ ~~ , and all 

six of them remain arbitrary. 
Thus we see that the metric (22) contains in its 

components gab four two-dimensional arbitrary 
functions in each order except the linear order, 
where there are six, and the zeroth order, where 
there is one function q. The infinite number of 
arbitrary functions in this solution is completely 
understandable. The point is that the equations 
Rab = 0 can be solved for the highest derivatives 
of gab with respect to the coordinate z, and can 
then be solved with expanding gab in the time. It 
can be shown that in this case they will satisfy the 
Cauchy-Kovalevskil theorem, and the components 
gab must then of course admit an arbitrariness of 
the form 

8 
-gc;blz=O = Fab(x1 x2 t\ 
{}z ' ' ,. 

Expanding now in the time coordinate, we find of 
course, that the arbitrary funetions ~ab and Fab 
lead to a two-dimensional arbitrariness in each 
order. 

3. CONCLUSION 

Let us now show that our solution of the gravi­
tational equations is general and hence, describes 
an arbitrary gravitational field in the vacuum. The 
criterion for the generality of the solution is the 
presence of four arbitrary functions of three vari­
ables. Owing to the symmetry of the theory in all 
four coordinates, it is immaterial on which three 
variables these functions will depend, on all three 
space variables or on two space variables and the 
time variable. Both cases are physically equivalent. 

Let us consider the solution (22) and show that it 
contains exactly four arbitrary functions of the 
variables x, y, and t. We shall consider only the 
components gab• since ga3 and g 33 are completely 
determined by the arbitrariness in gab and contain 
no "own" functions Using J. Cll = 0 we write g · ab ' ab 
in the form 

"" "" 
g11 = q + ~ tk(1<I>~~>ek• + p~~>e-k•) + ~ tk A~>, 

k=1 k=2 

"" 00 

gtz = ~. tk (<I>~~> ekz + F~~> e-k•) + ~ tk A~>' 
k=1 k=2 

"" 
g22 = q + t (1<I>~~ e• + F~ e-•) + ~ tJ< (<l>g<> ekz + Fi;> e-k•) 

k=2 

"" 
(33) 

It was shown earlier that not all six functions 
~~~ and F~~ are arbitrary in each order k, since 

the equations R0 = 0 and R~ = 0 impose on them 
Q 

two algebraic conditions in each order, beginning 
with k = 2. Usin~ these, we can express all func­
tions ~~~) and F2~) (k = 2, 3, ... ) through ~~~>, 

F~p, q, ~~~), ~~~), F~~), F~~) (k = 1, 2, ... ).Since, 

as explained above, in the linear order in the time 
all six functions ~~~ and F~~ are arbitrary, the 

component g 22 can be written in the form 

g22 = q + t(<l>g>e• + F~ e-•) + t2 G22, (34) 

where the time dependent function G2~ is com­

pletely determined by q, ~~p, Fg>, ~~~), ~~~), F!f>, 
F~~) (k = 1, 2, ... ), which remain arbitrary. 

We now expand the exponents in g11 and g 22 in 
powers of z. Then these components can be written 
in the form 

"" 
gu = q + ~ tk (<I>~~>+ F~~>) + z ~ tk (<I>~~>- F~~>) k + tG11 , 

k=i k=1 

"" 
gtz = ~ tk($~~>+Ff;>) 

k=1 
"" + z ~ tk ( (f)f;>- F~~>) k + tGtz, (35) 
k=i 

where the t and z dependent functions G11 and 
G12 are completely determined by the preceding 
terms and the functions q, ~g> and Fg>. Re­
forming the sums and differences in these expres­
sions, we can bring them to the form 

"" 
gu = q + ~ tk Dtlk> + z ~ tk B1<~> + tG11 , 

k=1 k=1 

"" "" 
gt2 = ~ tk Dt~> + z ~ tk B~~ + tG12, (36) 

k=1 k=i 

where all coefficients of the expansion D~~), B~k), 

D~~), B~~) (k = 1, 2, ... ) are arbitrary two-dimen­
sional functions of the variables x and y, and this 
being the case, these expansions are arbitrary 
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functions of the three variables x, y, and t. They 
are, to be sure, not completely arbitrary, since 
the expansions do not contain the free time­
independent terms. This will be discussed below. 

Finally, the components gab can be written in 
the following form, which clearly exhibits the 
physical arbitrariness: 

g11 = Du(x, y, t) + zBu(x, y, t) + tGu, 

g12 = D1z(x, y, t) + zBIZ(x, y, t) + tG12, 

gzz = q + t [<D~~ ez + FJ~> e-z] + t2Gzz. (37) 

It can now be said that G11 , G12, G22 and also 
ga3 and g33 are completely determined by the 
functions D11 , B11 , D12, B12, <I>~p, Fg>, q and the 
entire physical arbitrariness of the solution is 
determined by three four-dimensional functions of 
x, y, t, viz., D11 , B11 , D12, and B12 and three two-
d . . al f t' f . ~ (11 F (1 > d 1menswn unc Ions o x, y, v1z., ... 22 , 22 , an 
q. The possibility of such a form of the solution 
has already been noted earlier, at the end of the 
preceding section, on the basis of other considera­
tions of more general character. 

The functions Dab and Bah in the solution (37) 
are not completely arbitrary, as already mentioned. 
They satisfy the conditions 

Du(x, y, 0) = q, 
D 1z(x, y, 0} = 0, 

Bu(x, y, 0) = 0, 
B12 (x, y, 0) = 0. 

However, these conditions do not constitute any 
essential physical restriction. They are connected 
with our choice of coordinate system, which in turn 
was made possible by the simultaneity of the singu­
larity. They imply that the closer we come to the 
singularity at t = 0, the less we can deform the 
space-time, since arbitrary three-dimensional 
deformations are incompatible with the two-dimen­
sionality of the caustic, and arbitrary two-dimen­
sional deformations (of x and y) are not physical 
and can be removed by a special choice of the 
coordinate system. 

Writing the solution (22) in the form (37), we 
therefore see that it contains the necessary amount 
of arbitrariness to be the general solution of the 
gravitational equations in vacuum. 
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