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Coupled magnetoelastic waves in antiferromagnets in strong magnetic fields are considered 
for the case when the angle between the magnetic m·oments of the sublattices differs appre­
ciably from rr. Owing to exchange interaction, the most strongly coupled are the nonactivated 
spin and longitudinal sound waves. The relative corrections to the frequencies (phase veloc­
ities ) of the sound and magnetic waves during magnetoacoustic resonance are of the order 
( oMVps2 ) 112• The amplitude of longitudinal sound oscillations induced by an alternating mag­
netic field is calculated. It is shown that excitation of longitudinal sound waves occurs only if 
the alternating magnetic field is parallel to the de magnetic field. 

1. Coupled magneto-elastic waves arise in an 
elastically deformed ferromagnet because of mag­
netostriction and ponderomotive forces. [1- 3] The 
coupling between the spin and elastic waves, gen­
erally speaking, is small and is characterized by 
the dimensionless parameter t' = (Mal ps2 )112, 

where M0 is the magnetic moment per unit volume, 
p is the density of the substance, and s is the 
speed of sound ( t' « 1 ). Under conditions of mag­
netoacoustic resonance, when the frequencies and 
wave vectors of the spin and sound waves coincide, 
mixing of the branches of the energy spectrum of 
the ferromagnet occurs, and the corrections to the 
frequencies are found to be proportional to t'. 
Therefore the coupling between the elastic and 
spin waves in ferromagnets is most strongly mani­
fest under conditions of magnetoacoustic resonance; 
far from resonance the relative corrections to the 
frequencies of the spin and sound waves are pro­
portional to t' 2• 

An analogous situation occurs in antiferromag­
nets in weak magnetic fields. [(,S] However, in 
sufficiently strong magnetic fields, the situation is 
entirely different. That is to say, if the external 
magnetic field is such that the angle 2 e between 
the magnetic moments of the sublattices is sub­
stantially different from zero and rr (sin 2e ~ 1 ), 
then the coupling between the spin and sound waves 
is due to the exchange and not the relativistic inter­
action between the magnetic moments. The role of 
the coupling parameter in this case is played by 
the quantity t = yt;'o112 cos e, where y ~ 1, 

o ~TN I llMo is the exchange interaction constant, 
TN is the Neel temperature, and Jl is the Bohr 
magneton. Since o » 1, the magnitude of t is 

substantially greater than t' and consequently a 
relatively strong interaction between the sound and 
spin waves takes place over the entire frequency 
range. Because of this, sound waves can be excited 
by means of an applied alternating field not only at 
the frequency of magnetoacoustic resonance but 
also over a wide range of frequencies. 

The interaction between the spin and sound 
waves in this case is increased when there is mag­
netoacoustic resonance and is characterized by the 
quantity (oMVps2 )1/ 2• 

By virtue of the isotropic character of the ex­
change energy, the spin waves are coupled to the 
longitudinal sound waves and only the nonactivated 
spin waves from the two spin branches interact 
with the longitudinal sound waves. The interaction 
between the spin waves and the transverse sound 
waves, on the other hand, is due to the relativistic 
part of the magnetostriction, and we shall not take 
it into consideration. 

We note that after the magnetic sublattices are 
''flipped,'' the magnitude of the static deformation 
in sufficiently large external magnetic fields de­
pends strongly on the magnetic field. For such 
values of the external magnetic field when the 
angle between the magnetic moments of the sub­
lattices is rr/2, the sign of the volume static de­
formations changes. Depending on the sign of the 
magnetostriction constant for these values of the 
magnetic field, there occurs a transition from uni­
form compression to expansion or vice versa. 

Because of the interaction of the spin and 
longitudinal sound waves, the tensor at the high­
frequency magnetic susceptibility Xik ( w, k) con­
tains not only the characteristic frequencies of the 
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spin system, but also the frequencies of the longi­
tudinal sound waves. The sound frequencies have 
only the component Xzz ( w, k), which means that 
the sound waves appear when the alternating mag­
netic field is polarized along the constant external 
magnetic field (parallel setting ) . 

2. Consider a uniaxial antiferromagnet, the 
ground state of which in the absence of an external 
magnetic field is determined by two compensated 
magnetic sublattices. The Hamiltonian of such an 
antiferromagnet in an external magnetic field has 
the form 

:;r; = ~ dV { 6M1M2- ! ~ [(nM1)2 + (nM2)2] 

- ~' (nM1) (nM2)- (M1 + M2, Ho) + 6y (M1M2) Uii 

1 1 ( 1 )2 1 
+ 2A!Uii2 + 2 A2 \ Uih- -3 b;hUU + -2 pti;2 

where Mj ( r) is the density of the magnetic moment 
of the j-th sublattice (j = 1, 2 ), a, a', o are 
exchange integrals, {3 and (3' are magnetic anisot­
ropy constants, H0 is the constant uniform magnetic 
field, p is the density of the substance, u is the 
elastic displacement vector, 
uik =% ( 8ui/ axk + auk; axi ), "-1• "-2 are the 
elastic constants, and 'Y is the magnetostriction 
constant. 

We shall assume tha~ the antiferromagnet has 
magnetic anisotropy of the "easy-axis" type, i.e., 
(3 - (3' > 0. This means that if the magnetic field 
directed along the preferred axis is less than the 
''flipping'' field Hk, then the magnetic vectors of 
the sublattices will be oriented oppositely to one 
another in the ground state. On the other hand, in 
fields stronger than Hk the magnetic moments are 
rotated by some angle (} ( 0 ::;::; (} < Tr/2) relative to 
the preferred axis. 

If the magnetic vectors of the sublattices and 
the deformation tensor are represented respec­
tively in the form 

(2) 

then the angle (} and the magnitude of the volume 
deformation are easily found from the condition 
that the energy (1) be a minimum with respect to 
small deviations of mj and u{k· We then obtain 
the following equations for (} and u~i: 

[26(1 + yu;;0} - (~+~')]cos tT =HoI Mo, 

(3) 

It is seen from this that the magnitude of the vol-

ume static deformation depends on the external 
magnetic field even when H0 = 2-1/ 2H00 , where H00 

= ( 26 - {3 - {3') M0, changes sign. In fields 
H0 > Ho1• where H01 = ( 26 - f3 - 13' - 262 Y2M~ I "-1 )M0, 

the magnetic moments line up along the n axis. 
The quantities mj, which characterize the devia­

tions of the magnetic moments of the sublattices 
from their equilibrium values, are conveniently 
written 

(4) 

where j is the label of the sublattice, and the unit 
vectors etj• e 71 j, e~j are chosen in the following 
way: etj is oriented in the direction of the mag­
netic moment of the j-th sublattice in the ground 
state, etj = Mjo/M2, e~j is perpendicular to the 
plane of the magnetic moments M10, M2o, and 
e 71 j = etj x e~j· 

The operators mjt• mj7J, mg are connected 
with the Holstein-Primakoff operators [sJ by the 
relations 

mi1;::::::: -l!ai+aj, miTl ~ i(I!Mo I 2) 'f•(ai- ai+), 

mis,..., (I!Mo I 2) '!.(ai + ai+). (5) 

We limit the expressions for mj 11 and mg to 
linear terms in the operators aj, since we are not 
interested in relaxation processes. 

The displacement vector u is related to the 
operators for the emission and absorption of 
phonons bks and bks in the following way: 

1 ~ esk . (6) 
u(r) = (2p V)ih L.irosk'h ( bske'kr + bsk +e-ikr). 

k,s 

Using (4)-(6) and transforming from the opera­
tors a. and a: to their Fourier components ac­
cordink to theJ formula 

a·= V-'f,\~ a· eikr 
·' ~ Jk ' 

h 

we obtain the following expression for the Hamil­
tonian of the antiferromagnet (1) in terms of the 

opetators ajk' ajk and bsk' b;k: 

3C = ~ {[Ak (alk+alk + a2k+a2k) + Bk (atk~-k + alk+a;_k) 
k 

(7) 
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here 
Ak = 11Mo[ak2- 1 /z~ sin2 'l't + 6'], 

Bk = 1/211Mo sin2 tt[2(a'k2 + 6') - WJ, 
Ck = 1/211Mo[ (a'k2 + 6') (1 +cos 2'1't) + ~' sin2 tt], 

Dk = 1/2~~t1vlo sin2 'l't, 6' = 6- 6:!y2Mo2 cos 2'1't I At, 

while Wlk and Wtk are the frequencies of the 
longitudinal and transverse sound waves, respec­
tively. 

In order to find the spectrum of coupled mag­
netoelastic waves it is necessary to diagonalize 
the Hamiltonian (7). This process is conveniently 
carried out in two stages. First we introduce in 
place of the operators ajk and aj+k the operators 
ajk and ajk according to the formulas 

The Hamiltonian (7) in terms of the new operators 
has the following form: 

Jt= ~ {(Ak + ck) a-lk+a-lk + 1/2 cnk + nk> c-alk-al-k + a-lk+-a~-k) 
k 

+ (Ak- ck> a-2k+-a2k + 1/2 (Dk- nk) ca-2k-a2-k + a-2k+;z;_k) 

+ Fk fbzk (a2-k- ~k+) + hzk+ (a;_k-~k)l + wzkhzk+bzk 

(9) 

It follows from Eq. (9) that only the spin waves 
of the second branch, correSponding to the opera­
tors a2k• are coupled to the longitudinal sound 
waves. The transverse sound waves do not inter­
act with the spin waves in this approximation, and 
we shall not consider them further. The diagonali­
zation of that part of the Hamiltonian (9) containing 
the operators a1k is well known.[?] We give here 
only the final results: 

JC1 =~[(A~<+ Ck)iitk+alk 
k 

+ 1/2(Bk +Dk) (iiu,iit-k + iitki:itk)] = ~ EtkCtk+c!k, 
k 

Etk = [ (Ak + Ck) 2 - (Bk + Dk) 2]"> 

= 11Mo{26'[ (a+ a' cos 2'1't)k2 

+ 26' cos2 tt - (~ - W) sin2 tt]} •;,. (10) 

The operators a1k are connected with the spin wave 
operators c1k by the relations 

- r Ak + ck + Etk ]'/, 
Utk- L 2 ' Etk 

(11) 

In a similar way we can diagonalize that part of 
the Hamiltonian (9) that contains only the operators 
a2k. The canonical transformation in this case has 
the form 

_ _ + ·- + [ Ak- ck + e2k ]'/, a2k = U21<.C21<. D21<. C2-k ; U21<. = , 
2E2k 

(12) 

and the energy 

E2k = [ (Ak- Ck)2- (Bk- Dk) 2]'h. 

Note that E2k is the nonactivated branch of the 
spin waves of the antiferromagnetic after "flipping" 
of the sublattice magnetic moments. Substituting 
the magnitudes of the coefficients Ak, Bk, Ck, and 
Dk into the expression for E2k and assuming that 
( ak) « 1, we obtain 

E21<. = vk, (13) 

where v is the phase velocity of the nonactivated 
spin waves, equal to 

v = J.tMo sin 'l't[ (a- a') (26'- ~ -- ~') ]'!•. (14) 

Using Eq. (12), we may now write the Hamil­
tonian (9) in the form 

Jt = ~ {e21<.C2k+c2k + wzk bzk+bzk+ Et~<.Ctk-Ctk 
k 

(15) 

Diagonalization of this Hamiltonian is also carried 
out by means of a canonical uv-transformation, but 
in this case the operators c2k and b Zk should be 
superpositions of both the new ''spin'' and the new 
"phonon" operators, i.e., 

C21<. = u22 c21<. + U2adak + v2; c2::_1<. + D2ada!k, 

(16) 

The magnitudes of u and v in (16) are given in the 
Appendix. 

Using the equations of motion and the commuta­
tion relations for the operators c2k, bZk· we obtain 
the following dispersion equation, which determines 
the frequencies of the coupled magnetoelastic 
waves: 

(17) 

Since the nonactivated branch of the energy of the 
spin waves and the frequency of the longitudinal 
sound w1k depend linearly on the wave vector k, 
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the frequencies of the coupled magnetoelastic 
waves will be linear functions of the wave vectors. 

The phase velocities of the coupled magneto­
elastic waves are determined from Eq. (17) and 
equal to 

v22 = 1f2(v2 + s2) + (1j4(v2 _ 82)2 + 4~2v2s2]"', 
vi= 112(v2 + 82) _ (1f4(v2 _ s2)2 + 4~2v2s2)'i2. (18) 

If in the antiferromagnet the phase velocity of the 
sound waves is greater than the phase velocity of 
the spin waves, 11 then 

(19) 

From these expressions it follows that the rela­
tive additions to the phase velocities of the sound 
and magnetic waves for the values o ~ 103, M0 

~ 103 cgs emu, y ~ 1, p ~ 10 g/cm3, v ~ 105 em/sec, 
s 1 ~ 105 em/sec, are of the order t 2 ~ 10-2. Con­
sequently, both the corrections to the velocities of 
the sound (elastic) and spin (magnetic) waves 
amount to several per cent even outside the region 
of magnetoacoustic resonance. In addition, these 
corrections depend on the external magnetic field, 
since a change in the latter leads to a change in the 
phase velocities of the sound waves. 

When the phase velocity of the sound waves is 
less than the phase velocity of the spin waves, then, 
as is seen from (19), as the external magnetic 
field H0 is increased, the phase velocity of the 
spin waves v decreases. This leads to a fulfill­
ment of the resonance condition (equality of fre­
quencies) between the sound and spin waves at 
certain values of the external magnetic field when 
v ( H0 ) = s. The interaction between the spin and 
sound waves is then particularly strong, and the 
relative corrections to the corresponding magni­
tudes of the phase velocities turns out to be of the 
order of 

.1.v / v = 2~ ~ 10-1. 

From this relation it follows that the relative 
change in the phase velocities can be as high as 10%. 

By considering the resonant interaction of the 
spin and sound waves in antiferromagnets in strong 
magnetic fields, when w1k = E2k, we find 

Vo = vlt~=Jt/2. (20) 

Condition (20) can be fulfilled in antiferromagnets 

1 frhis occurs in the transition-metal carbonates. 

of the type a - Fe20 3, Cr20 3, or NiO. 
3. Through the use of the interaction of the spin 

and sound waves, sound waves may be excited in an 
antiferromagnet by means of an applied magnetic 
field, and spin waves by applied ultrasound. In 
order to determine the amplitude of sound waves 
excited by an applied alternating magnetic field, 
we shall calculate the average value of the opera­
tor uzz. 

The state of an antiferromagnet in an alternating 
magnetic field h ( r, t), to the accuracy of terms 
linear in h ( r, t ), is described by the density 
matrix 

r 

p(t) =Po+ i ~ dt' ~ dr'[M;(r',t')p0]h;(r' t'), (21) 

where Po is the equilibrium density matrix and 
Mi = M1i + M2i is the magnetic moment of the anti­
ferromagnet. The average value of the volume de­
formations of the body is determined by means of 
the operator uzz averaged with the density matrix 
p(t). We then have: 

00 

Uu (r, t) = ~ dt' dr' L8R (r- r', t- t') hs (r', t'), (22) 
-00 

where 

L.R(r- r', t- t') = iS(t- t')<[uu(r, t)M.(r', t')]>, 

{ 1, t- t' > 0 
e(t-t')= o, t-t'<O. 

Here the angular brackets ( ... ) indicate that the 
averaging is carried out with the equilibrium den­
sity matrix Po· 

Transforming to Fourier components in Eq. (22), 
we find 

uu(k, ro) = LsR(k, w)hs(k, ro), 

L.R (k, ro) = ~ dr ~ dt e-ikr+iwt L,R (r, t). (23) 

Using Eqs. (16), (22), (23), and (A-4), we find an 
expression for the vector component L~ ( r, t ): 

Lx = Ly = 0, Lz = --~~~~~- ( _k__) 
-yo' va2- v22 \ Mo 1 

X { ( ~ ) 'i, ( ro - :2 + if - ro + ro: + if ) 

( v ) .,, ( 1 1 \} 
+ ----;;, ro - Ws - if - ro + Ws + if ) ' (24) 

where w2 = kv2, w3 = kv3, r - 0. It follows from 
(24) that longitudinal sound waves are excited in an 
antiferromagnet only if the alternating magnetic 
field is polarized along the direction of the resul­
tant magnetization, i.e., excitation of longitudinal 
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sound in antiferromagnets in strong magnetic fields, 
due to exchange magnetostrictive interaction, is 
effected when the external de field H0 and the 
alternating field h are parallel to one another 
(parallel setting). 

In conclusion, we find the tensor of the high­
frequency magnetic susceptibility of the antiferro­
magnet. If the body is situated in an external alter­
nating magnetic field, then, as is well-known, an 
alternating component of the magnetization is 
induced in it: 

co 

= ~ dt' ~ dr'x;z(r-r', t-t')h1(r', t'). (25) 
-co 

Here the tensor of the magnetic susceptibility Xil 
has the following form: 

x;z(r- r', t- t') = iS(t- t') <[Mi(r, t)Mz(r', t') ]>. (26) 

Transforming to Fourier components in Eq. (25), 
we obtain 

m(k, ro) = x(k, ro)h{k, ro), 

'X (k, ro) = ~ dt ~ dr e-ikr+ioot X (r, t). (27) 

Using Eqs. (26), (27), (16), and (A-4), we find ex­
pressions for the components of the susceptibility 
tensor: 

(
Xxx Xxy 0 ) 

'X;k = Xyx 'Xyy 0 ; 
0 0 'Xzz 

4 , ( M ) 2 cos2'fr 'Xxx=fl!lo 2 2 , 
fl1h - (J) 

1 8!1<2 
XYY = AI _2 ____ 2 ' 

u !lik - (J) 
Xxy =- 'Xyx 

(28) 

The values of the components of the susceptibility 
tensor Xik ( k, w) for k = 0 agree with those calcu­
lated by Kaganov and Tsukernik. La J 

From (28) it follows that the Xzz component of 
the high-frequency susceptibility tensor has not 
one, but two poles ( w = w2, w = w3), corresponding 
to the frequencies of the coupled magnetoelastic 
waves. 

APPENDIX 

In order to find the characteristic frequencies of 
the coupled magnetoelastic waves and the values of 

the quantities u and v in Eq. (16), we make use of 
the equations of motion 

(A-1) 

From this we obtain the following system of homo­
geneous equations: 

u22(ro- e2a) + Fa(U2h- Vzk) (ua2- Va2) = 0, 

v22(ro + !lzk) + Fa(Uzk- Vzk) (u32- Va2) = 0, 

Uaz(ro- rozk) + Fa(u21<- V21<) (u22- V2z) = 0, 

Va2(ro + ffiZA) +Fa(Uzk- Vzh) (u22- V32) = 0. (A-2) 

By setting the determinant of this system equal to 
zero, we obtain the dispersion equation (17). To 
determine the quantities u and v, it is necessary 
to take into account that the operators c and b 
satisfy the Bose commutation rules. Then u and 
v have the following form: 

2e2A ( Uza - v21<) F k 
Uaz =- Uz2, 

(ro2- roza) (ro2 + 821<) 

roz + 821< ( ro22 - roza2 ) '/, 
u22 = 2 ( ffi2821<) 't. \ roz2- (fJa2 ' 

roa + ffitk ( roa2 - 821<2 )'" 
Usa = 2 ( roaroza) '/, ~i - >etlz2 • 

(A-3) 

The relations (A-3) are greatly simplified when 
the spectrum of the spin waves follows a linear dis­
persion law. Then we have 

2~(v~~ 2~(w)~ 
U32 = - Uzz, Uzs = - Usa, 

(v2- s) (vz + v) (v3 + s) (v3 - v) 

Vz-v 
Vzz = --- UJ2, 

vz+ v 

Va-S 
Vss=-+ Usa, 

Vs s 

2~v(vs) 'I• 
v3z =- uz2, 

(v2 + v) (v2 + s) 

v + Vz ( v22- s2 )'" 
u22= , ' 

2(vvz) '' Vz2- vi 

(A-4) 
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