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Critical fields for a phase transition of the second kind are determined for thin films over the 
whole temperature range. Both pure films as well as those containing various concentrations 
of impurities are considered. The reflection of electrons from the surface of the film is as­
sumed to be diffuse. 

THIS article is devoted to a determination of the 
critical fields of thin films (the thickness L of the 
film is much smaller than the BCS correlation 
parameter ~ 0) under the assumption of diffuse re­
flection of the electrons from the surface of the 
film. As is well known, for thin films the transi­
tion from the normal state to the superconducting 
state in a magnetic field parallel to the film is a 
phase transition of the second kind. Thus, the crit­
ical field as a function of temperature determines 
the boundary of instability of the normal phase to 
the appearance of a superconducting correlation in 
the TH phase plane. 

General equations are obtained in Sec. 1, based 
on a method proposed earlier by the author, allow­
ing one to describe the diffuse reflection of elec­
trons from a surface. [1] In Sec. 2 the critical 
field for pure samples is determined over the 
whole temperature range, and in Sec. 3 it is found 
for films containing various concentrations of im­
purities. 

The problem posed here was recently investi­
gated by a similar method in the article by de 
Gennes and Tinkham; [2] however, the results ob­
tained there for pure films are incorrect; in par­
ticular, the error is related to an unwarranted as­
sumption that the ordering parameter 6(r) is con­
stant along the thickness of the film. In addition, 
de Gennes and Tinkham [2] (following Nambu and 
Tuan, [3] who investigated the analogous problem 
for specular reflection) erroneously interpreted 
the divergence of the critical field of pure films 
when T - 0 as a "renormalization of the interac­
tion constant." The results obtained in [2] for 
contaminated films remain valid; however, the 
equation written out in Sec. 3 of the present article 
enables us to investigate in a unified way arbitrary 
concentrations of impurities and to obtain easily 
all possible limiting cases. 

1. GENERAL EQUATIONS 

Mathematically the posed problem reduces to 
the determination of the maximum magnetic field 
H in which superconductivity exists at a given tem­
perature T, i.e., a nontrivial solution of the follow­
ing integral equation 1) exists (see, for example, 
the article by Gor'kov[4J ): 

ll*(rt) = lA. lT ~ ~ @lro(r!, r2)@Lro(rh r2)/l*(r2)dr2. (1.1) 

In this equation, the integartion is carried out 
over the entire volume of the sample, A is the four­
fermion interaction constant, w = 7!T(2n + 1), and 
@I w (r1, r 2) is the thermodynamic Green's function 
of an electron for the normal metal in a magnetic 
field. In the case under consideration of a sample 
of finite dimensions, it is convenient to express 
the Green's function in terms of the eigenfunctions 
1/Jn(r) of an electron in the volume under considera­
tion in the presence of a magnetic field: [1] 

(1.2) 

Here ~n is the energy of the corresponding state, 
measured from the Fermi surface; the summation 
is carried out over all states. 

Substituting (1.2) in the right side of the inte­
gral equation (1.1) and integrating over the volume, 
we would arrive in the absence of a magnetic field 
at the matrix elements of 6* (r), for then the eigen­
functions 1/Jn(r) could be chosen to be real (see [1] ). 

In the presence of a magnetic field, it is necessary 
to introduce the complex conjugation operator [2] 

K'ljJ(r) = 'IJ"(r) (1.3) 

l)Of course, such a formulation is equivalent to the deter­
mination of the maximum temperature T for which a nontrivial 
solution of Eq. (1.1) exists in a given magnetic field H. 
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in order to reduce the right side of Eq. (1.1) to 
matrix elements. Then Eq. (1.1) takes the form 

L'l*(r!)=!A!T ~ ~ (~n-iw)~~m+iw) 
X <nlt-.*Kim> (miK+o(•·~- r)n). (1.4) 

Here, as indicated by de Gennes and Tinkham, [2] 

we put 

\)Jn"(ri)¢m(ri) =<nlo(r!-r)lm>. (1.5) 

As shown earlier, [t] in the quasi-classical 
approximation the product of two matrix elements 
reduces to the Fourier component of the correla­
tion function of the corresponding physical quanti­
ties, averaged along all possible classical trajec­
tories for the motion of a particle with Fermi 
velocity v: 

1 +oo ----
<n!flm) <mlgln) =--I f(t)g(t+-r)e-i(sn-sm>~a,, 

2nvV J 
-" (1.6) 

where 

v = mpo / 2n2 (1. 7) 

is the number of states per unit volume in a unit 
energy interval, and the bar indicates both the 
average with respect to the time t as well as the 
average over all possible classical trajectories. 

Since the 6-function 

f(t) =fo(t)o(r(t) -r1) (1.8) 

enters into the product of matrix elements on the 
right side of Eq. (1.4), we obtain by averaging with 
respect to the time t, 

1 +oo 
<nlflm> <mlgln> =-,-I f.,-0 -,-(r~1 )-g-,-(r--:(--:-t)-:-)e-i(sn-smltdt 

2nv J ' 
-oo (1. 9) 

where the averaging is carried out over all trajec­
tories passing through the point r 1 at the moment 
t = 0. 

It is not difficult to find the complex conjugation 
operator in the quasi-classical approximation if 
one takes into consideration that, in this approxi­
mation, the eigenfunctions of an electron in a mag­
netic field have the form 

\jJ(r) = \)Jo(r)ei<P(r), (1.10) 

where l/!0(r) is the eigenfunction in the absence of 
the magnetic field, and the phase cp(r) is deter­
mined by the equation 

( Vcp(r)- : A(r) )P¢o(r) = 0 (1.11) 

Then, putting K(r1) = 1, we obtain 

K(r(t)) = e-2i<P(t), (1.12) 

where 
r (t) 

e j' cp (t) = c Adl, (1.13) 

and the integral is taken along the appropriate 
classical trajectory. 

Taking what has been said into account, after 
summing over n and m one can reduce the integral 
equation (1.1) for ~*(r1 ) to the following form: 

~L'l*(ri)= ~ dr2L'l*(r2) 

00 

X 4nT ~ ~ dt e-2wt e2iqJ(t) o (r2 -- r (t)). 
w>O 0 

(1.14) 

The expression appearing under the averaging sign 
represents the probability that a particle emitted 
from the point r 1 at the moment t = 0, moving along 
a certain trajectory with Fermi velocity v, reaches 
the point r 2 at the moment t, having "gained" in 
this connection the phase 2icp(t). Averaging is car­
ried out over all possible classical trajectories. 

Since ~*(r) depends only on the z coordinate 
in the case of a plane film in a parallel magnetic 
field (the z axis is perpendicular to the plane of the 
film), we can integrate (1.14) over x and y: 

1 +Lf2 

~,1 -A1-t-.*(z1 ) = ~ K(z~,z2)L'l*(z2 )dz2 , (1.15) 
' -Ln 

K (z~, z2) = 4nT ~ <D ( w; z1, z2), 
w>O 

00 

<D ( w; z~, z2) = ~ dt e-2"'1 <D (t; z~, z2), 

0 

(1.16) 

(1.17) 

(1.18) 

In the absence of a magnetic field, <1> 0(t; z1, z 2) is 
simply the probability that a particle emitted with 
equal probability in all directions from the point 
z1 at the moment t = 0 is found at the point with 
coordinate z2 at the moment t. In the presence of 
a magnetic field, the phase ''gained'' by the parti­
cle is taken into account. 

The complete expression for <l>(w, z 1, z 2) in the 
case under consideration of a field parallel to the 
film (vector potential Ax =Hz, A2 = Ay = 0) is 
given in the Appendix, Eq. (A.1). The limiting 
values of this function for different relationships 
between the parameters are of the greatest interest. 

Region I: 

wL ell 
--~--£2,1; 
v c 

(1.19a) 
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region II: 

v ( eH )2 1 ( L2 ) 
--- -- - 2 --+ 2z1z2 1 

32 . c (!) 2 ' 

eH L2~ wL ~ 1 ; 
c v 

(1.19b) 

region III: 

'<I> ( w; Z11 z2) = Q>o ( w; Z11 z2)-~~ ( eH )2 z26co (z1 - z2) 1 
6w3 c 

wL eH 
-~11-L2. 

v c 
(1.19c) 

4>0 is the corresponding function in the absence of 
the field. It has the property 

+Liz 1 
~ <Po( w; z~, z2) dz2 = Zw 1 

-L/2 

(1.20) 

which follows from the indicated physical inter­
pretation of <I> 0(t) and Eq. (1.17). aw(z1 - z 2) is a 
a-function that falls off exponentially over dis­
tances on the order of vI w. We note that the func­
tion <I> 0(w) has a similar character for wL/v » 1: 

«l>o(w;zl,z2)~-1-6(z1-z2)+-4v2 3 6"(z1-z2). (1.21) 
2w 2 w 

Here it is appropriate to indicate the limits of 
applicability of the expressions obtained for the 
function <I>(w; z1, z 2). As is evident fr_om Eqs. (2.1) 
-(2.2), because of the exponential decrease of the 
corresponding expressions for small values of p,, 
the major contribution is made by the electrons for 
which 

J.t= cose;;;;;max(eHL2 Ic, wLiv). 

Our use of the quasi-classical approximation is 
valid so long as quantization of the projection of 
the electron momentum on the normal to the film 
surface is not important, i.e., so long as 
11-Po » L-1• Comparing with the previous estimate, 
we obtain the following condition for applicability 
of the expressions obtained for <I>(w; z1, z 2): 

max(eHL2 I c, wL I v) ~ 1 I PoL, 

which gives for region I, expression (1.19a), 

ellL2 I c ~ 1 I PoL, 

and for region II, expression (1.19b), 

wLiv~ 1 I poL; 

(1.22) 

(1.22a) 

(1.22b) 

condition (1.22) is always satisfied in region III. 

2. PURE FILMS 

The results obtained in the preceding section 
enable us to determine the critical field of pure 

films in which the mean free path of an electron 
is infinite. For relatively strong fields, when 
eHL2/c ~ 1, values of the function <I>(w) for which 
w ~ v/L, given by expression (1.19a), give the 
major contribution to the kernel K(z 1, z 2) given by 
Eq. (1.16), but when w » v/L the function <I>(w) has 
the a-function character (1.19c), so that the corre­
sponding part of the sum contributes essentially 
to the left side of the integral equation (1.15). 
Thus the kernel K(z 1, z2) turns out to be degenerate 
(cor:rect to terms of logarithmic order), and we 
can easily find the solution of the integral equation: 

{ eH(L2 '} 8•(z)~ exp -c 4 -z2 ) • (2.1) 

It is obvious therefore that for such fields the 
parameter D.*(z) depends significantly on z, 
reaching its maximum value at the boundary and 
its minimum in the middle of the film. 

Next we find, correct to terms of logarithmic 
order, the equation which determines the limit of 
instability of the normal phase (i.e., the relation 
between the critical field and the temperature): 

f ( e: L2) = In L~'c / ln ~T ' 
eH L2 ~ 1 

c ' 
(2.2) 

f(x)= ~ exp{-__!.(1-s2 ) }ds={ 1 -:.r/3, x~ 1 ~2 · 3> 
0 2 1/x, x~1 

The function f(x) is expressed in terms of the 
probability integral of imaginary argument. 

It follows from Eq. (2.2) that the critical field 
increases logarithmically as T - 0. For very 
large fields (eHL2/c » 1), we can obtain by a 
variational method from the general expression 
(A.1) for 4> ( w) the following expression for the 
critical field: 

eH 2 =I _!!_/I {_v_ eH v) (2.4) 
c L n LT n \ LT c c . 

Just as (2 .2), this formula is valid to within a coef­
ficient of the order of unity inside the logarithm 
sign. 

It follows from Eq. (2.2) that as T -Tc the 
function f(eHL2/c) -1, and therefore eHL2/c 
becomes small. Then it is evident from (2.1) that 
for weak fields (eHL2 / c « 1) the magnitude of the 
"gap" does not depend on z. So long as the field 
is not too small (1 » eHL2jc » LT/v), values of 
<I>(w) in region I (1.19a) (wLjv « eHL2/c) make as 
before the major field-dependent contribution to 
the sum (1.16). Then the critical field is deter­
mined from the following equation: 

-L2=3 1-- In -----L2 --eH ( T ) / [ ( 4y v eH ) 7 J 
c • Tc . n LT c 3 

(2.5) 

(the numerical factor inside the argument of the 
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logarithm is found from the exact expression (A.1) 
for ~(w) ). 

Equation (2.5) is valid in the temperature range 

1 ~1- T /Tc~L/~o. 

Upon further increase of the temperature, the 
field decreases so much that eHL2/c becomes 
smaller than LTjv, so that region I makes no con­
tribution to the sum in (1.16), and region II (1.19b) 
(eHL2/c « wLjv « 1), gives the major field­
dependent contribution. Hence, for 1- (T/Tc) 
« L; ~ 0 we obtain 

( eH)2 = 128 1- T/Tc. (2.6) 
c ;r vV/Tc 

In this temperature region the critical field varies 
with the thickness of the film like L -312, whereas 
at lower temperatures H depends on the thickness 
for the most part like L -2• 

From what was said at the end of the preceding 
section with regard to the validity of the quasi­
classical approximation, it follows that the results 
(2.2), (2.4), and (2.5) for the critical field are valid 
so long as eHL2jc » ljp0L (see (1.22a) ). This 
condition may be violated only near Tc in the case 
L2 « ~o/Po• the result (2.6) in the immediate 
neighborhood of Tc is applicable, as follows from 
(1.22b), for not too thin films (L2 » ~ 0 jp0). 

3. CONTAMINATED FILMS 

Knowing the function <l>(t; z 1, z2) for clean films, 
one can solve the problem of the critical field of 
thin contaminated films. Starting from the physi­
cal interpretation of this function (see Sec. 1), we 
obtain the following integral equation for the analo­
gous function <1> 7 (t; z1, z2) for films containing 
impurities, assuming that the scattering by impuri­
ties is isotropic; 

t dt' +LI2 

<t>,(t: Zt. zz) = <l>(t; Zt. z2)e-tl< + ~ -- ~ dz' <l>(t'; Zt. z') 
0 '( -L/2 

(3.1) 

The first term on the right hand side of this equa­
tion corresponds to the motion of a particle from 
the point z1 to z2 without collision with impurities; 
therefore, it is equal to the corresponding function 
<l>(t) for pure films multiplied by the probability 
that a collision with an impurity does not take place 
during the time t. The second integral term takes 
multiple collisions into account under the assump­
tion that the first collision with an impurity after 
the flight of the particle from the point z1 takes 
place at the point with coordinate z ', at the moment 
of time t '. If we take the Laplace transform, 

00 

<l>,(w; z1, z2) = ~ <l>,(t; z~, z2)e-2wt dt, 
0 

then the equation takes the form 

!l>,(w; z,, Zz) = 11> ( w + 2~ ; z,, Zz) 

(3.2) 

f +Lf2 1 
+- ~ dz'<t>(w+-2 ;z,,z')ll>,(w;z',z2). (3.3) 

't -L/2 '( 

The kernel K(z 1, z2) of the integral equation (1.15) 
is constructed according to (1.16) out of the func­
tion ~ T ( w) determined in this manner. 

The impurity concentration, i.e., the relation 
between the mean free path and the other param­
eters ~ 0 and L of our problem, substantially influ­
ences the behavior and value of the critical field. 

A. Let us consider the casr~ of a mean free path 
which is large in comparison with the BCS corre­
lation parameter ~ 0 (l » ~ 0). When the field is not 
too small (eHL2/c » L/v7), then for small values 
of w (wL;v « eHL2/c) it is easy to solve the inte­
gral equation (3.3) for <1> 7 (w) if it is recognized 
that ~(w) in region I is determined by expression 
(1.19a). We have 

<I> (w· z z ) - 't 
' ' 1' 2 - 2w't + 1- f(eHL2/c) 

(3.4) 

(the function f(x) is defined by formula (2. 3) ) . 
For large fields (eHL2/c "" 1) the "gap" depends 

on the z coordinate [see Eq. (2.1)1. and with account 
of the fact that 1 - f ""' 1 we obtain, with logarithmic 
accuracy, the equation for the critical field when 
T<<1/T 2) 

f (ecHL2 ) = ln L;c /tn 7, (3.5) 

and forT » 1/ T we obtain the same results (2.2), 
(2.5), and (2.6) as for pure films. Thus the loga­
rithmic increase of the field stops when T "" 1/ T, 

and the criticalfield tends to the finite limit (3.5) 
as T-o. 

B. l ""~ 0 • 1- (T/Tc) « 1. Equation (3.5) holds 
so long as the value of the critical field given by it 
satisfies the condition eHL2jc "" 1. For smaller 
fields [1 » eHL2/c » Lv-1(T + T-1)], using Eq. (3.4) 
and the limiting value of f(x) for small arguments 
[see Eq. (2.3)1. and recognizing that ~ T = <I> for 

2>For films with such a large mean free path that 
eHL2/c » 1 at low temperatures, one can obtain the equation 
for the critical field in the temperature range T « 1/T from 
Eq. (2.4) by replacing T by 1/T. 
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large values of w (Lw/v ""eHL2;c » L/vr), we 
obtain the following equation for the critical field: 

( 1-~ eH v)(ln_!..-11'(~) +¢(~+-1- eH£2)) 
\ 3 ·c Tc 2 2 12:rtT't c 

+_!_ eH £z( ln 4y eHLv _!__) = O. (3.6) 
3 c :rt eTc 3 

Hence, in the region 1 » 1 - (T/Tc) 
» L/min(~0 • l) 

eHL2 = 3 ( 1 _!_)fr ln(4v eH Lv) __ 7_+~]. 
C Tc. i L \ :rt C Tc 3 8Tc't 

(3.7) 
Of course, in the limiting case of very slight im­
purity concentrations (Z » ~ 0) this expression goes 
over into the corresponding expression (2.5) for 
pure films. 

Upon further increase of the temperature 
[1 - (T/Tc) « L/min(~0 • Z)] the contribution to the 
kernel K(z 1, z2) is made by those values of 
cl>r(w; z1, z2) which are determined from 
cl>(w; z1, z2) in region II (1.19b). In the absence of 
a field, Eq. (1.20) holds for arbitrary values of w 
and similarly 

+LI2 1 
~ !1>0~ ( w; z1, z2) dzt =<Do~( w) = 200 . (3. 8) 

-L/2 

Since cl>(w; z1, z2) in region II (1.19b), when inte­
grated over one of the coordinates, does not depend 
on the other coordinate 

+Liz 
~ !I> ( w; Zt, z2) dz2 == !I> ( w), 

-L/2 

eH wL 
-£2~-~1, (3.9) c v --

cl>r(w; z1, z 2) has the same property when 

eH L( 1 ) -£2~- w +- ~1. 
c v 2't 

Then from (3.3) we obtain the following equation 
which determines cl> r(w) in this region: 

!l>~(w) = !l>(w + 1/2T)_~ 
1- 't-141(w + 1/<2't) 

-~ [ 1 - 1~ (-e~--r 2~:~ 1 J 
!1>, (w) =-----------

[ v ( eH )2 £3 l 
w+32 -c- 2w-r+L' 

eH L ( 1 ) -£2~- w+- <L 
c v 2-r 

In the case under consideration l ~ ~ 0 • 

(3.10) 

(3.11) 

1 - (T/Tc) « L;mina0, Z), the second term in the 
denominator of (3.11) is smaller than the first; 
hence, for the critical field we obtain the same ex­
pression (2.6) as for pure films. 

C. The mean free path satisfies the condition 

~ 0 » l » -./ ~ 0L. Then from expression (3.6) we ob­
tain the equation of the critical field over the whole 
temperature range 1 - (TIT c) » L/ l, 

ln ; = 1Jl( ~) - ¢(! + 12!:r-r e~ L 2). (3.12) 

In particular, for T « T c 
eH 3:rt 
--£2 = -- Tc't, (3.13) 

c 'V 

and for 1 » 1- (T/Tc) » L/Z 

eH 24 
-£2 = -TTc(1- T/Tc), 

c :rt 
(3.14) 

which, of course, coincides with the appropriate 
limiting value of formula (3. 7). 

In the temperature range 1 - (T/Tc) « L/ l, the 
result, as indicated above, coincides with the result 
(2.6) for pure films. 

D. The de Gennes-Tinkham case [2] 

(~ » l » L). Here there is no contribution c1> T 

corresponding to cl> i1;1 region I (1.19a) in the entire 
temperature interval. In region II 
[eHL2;c « Lv-1{1 + (1/2r)}J the function cl>r is 
determined by expression (3.11), in the denominator 
of which one can, in this case, neglect 2wr in 
comparison with unity since for w "" 1/ T the 
second term of the denominator is much smaller 
than the first. The second term of the numerator 
is always negligibly small. Then, for the entire 
temperature range, the equation for the critical 
field has the form 

T ( 1 ) ( 1 _ v£3 ( eH )2) lnTc=1Jl 2 -\jl 2-+64nr\~c- · (3.15) 

We stress the fact, mentioned in [2], that in this 
case the critical field does riot depend on the mean 
free path. ForT « Tc, formula (3.15) gives 

( eH ) 2 _ 16:rt Tc 
-c- -yv£3' (3.16) 

and for 1 - (T/Tc) « 1 it gives the same result as 
for pure films in a narrow region near Tc [see 
Eq. (2.6)1. 

E. Very dirty films (Maki's case, [5] L » Z). 
Here the function c1> 7 (w; z1, z2) is determined by 
expression (1.19c) for cl>(w; z1, z2) in region III. 
Taking its 6-function character into consideration 
over the distances ""L which are of importance to 
us, it is advisable to convert the integral equation 
(3.3) for cl> r to a differential equation: 3> 

3 >one can show that if the scattering by impurities is not 
isotropic, then the free flight transport time enters into this 
expression as T. Equations analogous to (3.17)-(3.21), rep­
resenting a generalization to arbitrary temperatures of the 
Ginzburg-Landau equations without the nonlinear term, were 
obtained in another way by Makd•] 
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(3.17) 

with the boundary conditions 

~<DT(ffi; z1, z2) I = 0 
iJz1 z,=±L/2 

(3.18) 

(the same equation holds with regard to the other 
variable z2). 

It is possible to write the solution of this equa­
tion in the form 

~ <j)n (z!) <j)n (z2) 
<DT(ffi; Zt, Z2) = .::.J 2 16 + , 

h V TEn (!) 

(3.19) 

where (/Jk and Ek are the eigenfunctions and eigen­
values of the equation 

( ~: + 4 ( e: r z2) (j)n = En<j)h (z) 

with the boundary conditions 

8.qJn I = 0 
i)z z=+LI2 • 

(3. 20) 

(3.21) 

Substituting the thus obtained 4> 7 into expres­
sion (1.16) for the kernel K, we find that D.* (z) 
must be the eigenfunction of the differential equa­
tion (3.20) with the corresponding boundary condi­
tions (3.21). For the case of sufficiently thin films, 
when eHL2/c « 1 over the whole temperature range, 
the critical field is determined by the equation 

(3.22) 

which, in the limit of temperatures close to Tc, 
gives the result of the Ginzburg-Landau theory: [7] 

eH = ( __!_!.__~)''' (1- T/Tc)'/, (3.23) 
c \:rtvZ. L 

and forT « Tc 

eH = ( 9nTc )'" .!._ 
c vvZ-r L 

Provided that 

( z;o )'" 
L";?>, 1- T/Tc. 

(3.24) 

the film behaves like a bulk sample, and the phase 
transition of the second kind occurs at the upper 
critical field Hc 2 of dirty alloys (the correct value 
of which was determined over the whole tempera­
ture range by Maki [s] ) or at the surface field Hc3 

of Saint James and de Gennes[8J. 4> 
In conclusion, let us go into the applicability of 

the obtained expressions, following from the valid­
ity of the quasi-classical approximation. What was 
said at the end of Sec. 2 with regard to very pure 
films remains in effect for ideally pure films 
(case A). Expressions (3.7) and (3.12)-(3.14) are 
applicable when eHL2/c » 1/p0L [see (1.22a)l. 
This condition may be violated near T c [formulas 
(3. 7)' (3.14)] if 

LZ< min(;o, l) I Po, (3.25) 

and (3.13) is valid far from Tc for L » ~o/Zp0 • 

Expression (2.6) in a narrow region near Tc for 
slightly contaminated films (cases A-B) and 
expression (3.15) for case rare valid for 
L2 » min(~ 0 , Z)/p0, as follows from (1.22b). 

The author thanks L. P. Gor 'kov for a discus­
sion of the obtained results. 

APPENDIX 

The general expression for 4>(w; z1, z2) has the 
form 

1 { r d~-t ( 2ffi \ 
<D ( ffi; Zt, z2) = 2v ~ ----;- exp - -----v; I Zt - z2l ) 

X lo ( l'i- 112 (zt2 - z22) eH J + 21¥( 2ffi£) 
1-t c ' v ' 

2 LJ X[F(z1)F(z2)+F(-zt)F(-z2)]+2W( ffiu. 

X ¢ ( 2ffi~ )[F(zt)F(- Z2) + F(- Zt)F (z2)]}. (A.1) 

The first term on the right hand side is obtained 
upon averaging over trajectories that pass directly 
through the points with coordinates z 1 and z2 (see 
Fig. a). The following terms correspond to 

a b c d e 

averaging over the trajectories shown in Figs. b, 
c, d, and e. The sign of the argument of F depends 
on whether the first collision after the flight from 

4 >The intermediate case L - ~0 [1 - (T /T c)]- y, was 
considered near T c by Abrikosov. [9 ] It is not difficult to 
generalize his result to arbitrary temperatures, using Eqs. 
(3.17)- (3.21). 
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the point z1, or the last collision before hitting the 
point z 2, took place on the right or left side of the 
film. The function F(z) is given by 

1 
[ 2 L F(z)= ~0 d~texp - : 11 (- 2+z )] 

Xlo(l'1-ll2(~'!_-z2) eH). 
\ ll 4 c, 

(A.2) 

The functions ~and 1/J are obtained as the result 
of summing the series of diffuse multiple reflec­
tions from the walls: 

r {1-2x x-<1 'ljl(x) = 2 .l e-x/JJ. ud11 = ' ' 
0 · 2x-1 e-x, x>1, 

(A.3) 

'l'(x)= 1 ={1/4x, x-<1, 
1-'¢2 (x) 1, x>L 

(A.4) 

These functions do not depend on the field, since 
the phase "gained" in connection with the motion 
of a particle from one side of the lamina to the 
other is equal to zero. We note that 

F(L I 2) = 'lz'¢ (2roL I v), 

and in the absence of a field 

(A.5) 

+LI2 2 L ) 
~ Fo(z)dz = __!J_ ( 1- 'ljJ (~) • (A.6) 

-Ltz 4ro . v 
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