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It is shown that, during passage through a superconductor of the second kind in the mixed 
state, a beam of polarized neutrons is depolarized. In principle the marked dependence of 
the depolarization on beam direction and the direct relation between the period of this de
pendence and the structure of the magnetic field can be used for the experimental investiga
tion of the Abrikosov two-dimensional vortex lattice. 

THE magnetic field in a superconductor of the 
second kind in the mixed state has a two-dimen
sional periodic structure. [1-3] We shall show that a 
possible method for studying this structure is 
through transmission of a beam of polarized neu
trons through the sample. 1 l 

If the initial polarization of the beam had com
ponents p 11 along and p 1 perpendicular to the direc
tion of the field H, the polarization p' after passage 
through the sample is given by the formula 

p' = Pll + P-L<cos cp) + [p..LH / H] <sin cp), (1)* 

where the symbol ( ... ) denotes an average over 
different neutron trajectories, cp is the angle of 
rotation of the neutron spin along a given trajec
tory, which is determined by the integral along the 
section lying within the sample: 

2ft ~ cp =- Hdl, nv (2) 

J-1 is the magnetic moment of the neutron, v its 
velocity. We shall from now on take P11 = 0 and the 
initial polarization to be p = p 1 . We shall also as
sume that the beam is monochromatic. 

The rotation of the plane of polarization a and 
the beam depolarization D = 1 - p' /p are given by 
the formulas 

<sin cp) 
a= ;arc tg ) , 

<cos cp 

D = 1 - (<sin cp) 2 + <cos cp)2) '"· 

(3)t 

(4) 

l)The authors are grateful to A. G. Mandzhavidze and Dzh. 
S. Tsakadze, who called their attention to this problem. 

*[plH] ""Pl X H. 
t arctg "" tan_,_ 

Thus the changes in direction and magnitude of 
the polarization (a and D) depend on the distribu
tion of field in the sample H = H(x, y), which deter
mines the difference between (sin cp) and 
sin ( cp) ((cos cp) and cos ( cp)); when these quanti
ties are equal, a = ( cp) and D = 0. 

To obtain formulas suitable for numerical esti
mates, it is useful to expand the field H in Fourier 
series: 

where Lx and Ly are the spatial periods along the 
respective axes, oriented appropriately in the two
dimensional vortex lattice (cf. below). 

Suppose that the beam direction Ox' and the 
perpendicular direction Oy' form a frame x'Oy', 
turned through an angle {3 relative to the reference 
system xOy (x = x' cos {3 - y' sin {3, y = x' sin {3 

+ y' cos {3). Then substitution of (5) in (2) and 
integration over x' gives for the angle of rotation 
of the neutron spin cp(/3, y') along the given trajec
tory (y' = const) for the given beam direction 
({3 = const) the value 

, ~ [ ·(ncos~ msin~) '] cp(~, y) = b (jlm,,exp 2:rn -y;---L- Y , (6) 
m, n=·-oo Y x 

2~thmn sin[:rtd(~)(mcos~/Lx+nsin~/Ly)) (7) 
{jlmn = ~ :-r(m cos ~/Lx + nsin ~/Ly) ' 

where d(/3) is the sample thickness along this 
direction. 

It is easy to see that when d » Lx, Ly, those 
coefficients for which 

643 



644 MAMALADZE, KHARADZE and CHEISHVILI 

m L:x: 
-=----tg~ 
n Ly 

(8)* 

are large. Since, furthermore, the coefficients hmn 
decrease with increasing m and n and satisfy the 
conditions hmn = hm,-n = h-m,n = h_m,-n (cf. be
low), in all the specific cases considered below the 
series (6) can be approximated by the two terms: 

c:p(~, y') = <poo + 2qJMN(~) COS [AMN(~)y'), (9) 

where M and N are the indices for which the coeffi
cients 'PMN (hMN) are larger than all others, ex
cept cp 00 (h00), satisfying the condition (8) for the 
given {3; AMN is determined by the corresponding 
value of the exponential in ( 6). Then the integration 
over y' which is necessary for determining the 
trajectory gives 

(sin c:p) = lo(2c:pMN) sin c:p00 (10) 

and an analogous formula for the cosine, where J 0 

is the Bessel function of the first kind. 
Thus the rotation of the plane of polarization a 

is determined by the average field (induction) 
B = h00 and depends on the beam direction only in a 
trivial way-through d({3): 

a = 2~-tBd(~) I liv. (11) 

On the other hand the depolarization of the beam is 
strongly dependent on the character of the field 
distribution in the sample. In first approximation 
it is given by the formula 

and depends on the beam direction, since the in
dices M and N are in general different for differ
ent {3. 

We now proceed to consider specific examples. 
The field distribution in the sample is known [1] for 
the cases where H0 ~ Hc2 and Hc1 < H0 « Hc2, 

where H0 is the external field, while Hc1 and Hc2 
are the critical fields limiting the region of the 
mixed state. In the first case, applying formula 
(10) of Abrikosov's paper [1] and formulas (5) and 
(6) of the paper of Kleiner et al. [2] we get: 

a) for a square lattice (Lx = Ly = L = .V2rr6/K, 
where 6 is the London penetration depth and the 
coordinate axes are along the minimum separations 
between vortices) 

(with m = 0, ± 1, ± 2, ... ; n = 0, ± 1, ± 2, ... ; 

*tg =tan. 

m = n = 0 excluded), 

h l'i 1/2 Hem 
oo = o-~ I Co 12 , (14) 

I c l2 = 2x(x-Ho/f2Hcm) 
0 1'.18(2x2 - 1) ' 

(15) 

where K is the parameter of the Ginzburg-Landau 
theory, and Hem is the thermodynamic critical 
field; 

b) for a triangular lattice 2) (Lx = Y3Ly 
= 2Yrr6/31f4K, axis Oy along the direction of mini
mum separation of vortices) 

1 1/2Hcm 
hmn = h2m'+n, n = h(m, n) = ( +1) n 

21/3x 
X(-1)mnlco'l2exp[- ~ (m'2 +m'n+n2)] (16) 

l'3 
(here m' = 0, ± 1, ± 2, ... ; n = 0, ± 1, ± 2, 
m' = n = 0 excluded), 

h H 1/2Hcm I , 1• 
00 = 0- 21/3 X Co ", 

I co' l2 = 21/3x(x- Ho/lfHcm) _ 
1,16(2x2 - 1) 

... , 

(17) 

(18) 

Thus in the case of the square lattice the direc
tion {3 = 0, which corresponds to M = 0, N = 1, is 
singled out; it has the maximum depolarization 

Dn (0) = 1- llo(a(O) lcol 2e-rrf2) I, (19) 

a(M = 2f.Z~-tHcmd(~) I fixv. (20) 

The next largest depolarization occurs when 
{3 = rr/4, M = 1, N = 1: 

Do(nl4) = 1-llo(a(nl4)lcol2e-")l. (21) 

The function Do(/3) is of course periodic with 
period rr /2, so long as this periodicity is not viola
ted in a trivial way by the inequality d({3) 
>"d({3+rr/2). 

In the case of the triangular lattice the first two 
distinguished directions are {3 = rr /6 (M = 1, N = -1) 
and {3 = 0 (M = 0, N = 2), when 

Da ( ~ J = 1 -I lo( a~i6)_ lco'l 2e-ni>3 )I, (22) 

Da(0)=1-l/o(a~~) lco'l 2 e-rr>"a)l (23) 

The period of the function D t::. ( {3) in this case is 
rr/3 (with the same comment as for Do(/3)). 

2)In this case, in the nonvanishing terms of (5) m and n have 
the same parity. 
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Similar results are also obtained when Hc1 < H0 

« Hc2, when the coefficients in (5) can be obtained 
by using formula (39) or (38) of[1]. This gives for 
the square and triangular lattices, respectively, 

) h 2i2nHcm 62 
a mn = X (2m'))2--,-(m~2-+_n_2,---)_+_£_2' (24) 

b) hmn = h2m'+n, n = h(m', n) 

(25) 

from which 

I ( ;t (26)2 
) I D0 (0) = 1 - 10 a (0) (2nfJ)2 + L 2 , (26) 

Do ( ~) = 1 -I lo (a ( ~) 2 ( 2:~~:~ £2) I ; (27) 

D 6 ( ~) = 1-llo (a(~) (4nfJ):~~~3Lv)2 ) I, (28) 

D 6 (0)=1-IJ0 (a(O) 2n(46~ )I· (29) 
3 (4n6)2 + ( 3Ly)2 

It should be noted that the approximations lead
ing to (26)-(29) are valid only for Lx, Ly « 6, i.e., 
when the inequality H0 > Hc1 is strong (Hct « H0 

« Hc2). Thus in the immediate neighborhood of the 
first critical field (H0 ~ Hc1) it is more convenient 
to use a different method for getting the formula 
for D({3), namely directly substituting formula (39) 
of[l] in Eq. (2). We obtain the expression 

( R ') _ 2}12 ;T.J1Hcm6 "" [ dv(~, y') J 
IP I'• y - lixv ..:::.J exp - --6--

v 

(30) 

which is a series over all vortices, the distances 
to which from the particular trajectory are denoted 
by dv(f3' y'). 

Under the conditions considered (H0 ~ Hct• Lx, 
Ly » 6), the main terms in (29) are those contain
ing the distances to the vortices nearest to the 
trajectory. In particular when the condition ( 8) is 
satisfied, we can restrict ourselves to the approxi
mation 

~ exp (- d; ) ~ d(~)exp( -{-) / Lt(fl), 

where L1 ({3) is the distance between vortices along 
the direction {3, and y' is restricted by the inequal
ity 0 ::s y' ::s L2({3); L2({3) is half the distance be
tween rows of vortices parallel to the given trajec
tory (on one of which the axis Ox' is fixed). Then 
the averaging over y' gives 

(sin <p) = - 6-
~(~) 

X { si [~~~~6 ]-si [n;t~~texp(-~(:) )]}. (31) 

A similar formula with si replaced by ci is ob
tained for cos (si and ci are the integral sine and 
cosine). 

Substituting (31) in (4), we get an expression for 
D({3) which can provide a specific formula if we 
make use of the fact that, with the coordinate sys
tems oriented as indicated above, a) for the square 
lattice 

Lt(O) =L, ~(0) =LI2, 

Lr(n I 4) = 1'21, ~(n I 4) = -y,2L I 2 

and b), for the triangular lattice 

Lt(n I 6) = Lv, ~(n I 6) = y3Lv I 4, 

Lt (0)_ = y3Lv. ~ (O) = Lu I 4. 

In other words, after turning of the beam through a 
half period D({3), the quan!!_ties L1({3), L2(f3Lare 
multiplied by a factor of v2 in case a) and v3 in 
case b). 

A common feature of all the cases considered is 
the presence of a maximum of the depolarization 
when {3 = 0, {3 = tan-1 (Ly/Lx) and for other beam 
directions determined by the condition (8), where 
the function D({3) has the period rr /2 or rr /3 depend
ing on whether the symmetry of the vortex lattice 
is square or triangular. al This last point provides 
a simple experimental possibility for determining 
the symmetry of the lattice (independent of the 
value of the external field H0). 

We should mention that the maxima of the de
polarization which should be observed when the 
condition (8) is satisfied, are extremely narrow and 
restricted to a range of angles of order !::;.{3 = L/d, 
outside of which the depolarization is practically 
zero. This presents difficulties for the proposed 
experiment, in which strict requirements must be 
imposed on the collimation of the beam. But since 
we are talking about investigations of the trans
mitted beam (and not the scattered beam, as is the 
case for other methods proposed for studying 
superconductors of the second kind by using neu
trons ( [4-s] and private communication from F. L. 
Shapiro)), we may hope that sufficient intensity will 
still be available with the better collimation. It ap
pears that the main difficulty of the experiment 
with polarized neutrons is the necessity for using 
a sample with a "single crystal" lattice of vor-

3)As already remarked above, this statement is valid only 
in the absence of a dependence of don /3, or at least if 
d(O) = d(rr/2) (or d(O) = d(rr/6) in the triangular case). 
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tices, which is more important in the present case 
than in experiments on neutron diffraction. (The 
depolarization of the beam is assured by the fact 
that different trajectories lie in regions with differ
ent magnetic fields. In directions slightly different 
from those given by condition (8), and in any direc
tion in a nonideal lattice, this is not the case, and 
the average field along the trajectory is practically 
identical for all trajectories.) 

Numerical estimates based on the formulas ob
tained here have shown that depolarizations of the 
order of tens of percent are entirely attainable. 
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