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We consider the absorption of an electromagnetic field by the electrons of a semiconductor 
in a quantized magnetic field. We show that scattering of electrons by optical phonons of 
frequency w0 leads to resonance absorption at frequencies w = I mwH ± w0 I, where WH is 
the cyclotron frequency and m is an integer. The shape and intensity of the absorption peak 
are calculated. The possibility of experimental realization of the effect is considered. 

INTRODUCTION 

FoR electrons of a semiconductor situated in a 
magnetic field, there are two types of resonances 
connected with the cyclotron frequency WH. These 
are cyclotron resonance, when the frequency w of 
the high-frequency electric field coincides with 
WH, and the magnetophonon resonance of Gurevich 
and Firsov [t, 2J, when the frequency w0 of the op­
tical phonons coincides with WH· In either case, 
satisfaction of the resonance condition ensures 
intense transfer of electrons between the neighbor­
ing Landau levels. It is natural to visualize a 
process in which the transfer is the result of 
simultaneous action of two factors, i.e., when the 
absorption of a quantum of the high frequency 
field is accompanied by simultaneous emission or 
absorption of a phonon. We shall call resonance 
of this type cyclotron -phonon resonance. 

The first to point out the possibility of such an 
effect was apparently Klinger [3], who calculated 
the high-frequency conductivity of a semiconductor 
in a quantizing magnetic field 1 l. He started in his 
calculations from the Kubo formula using the Van 
Hove method. However, the effect was not investi­
gated in detail in his paper and the possibilities 
of its experimental observation were not dis­
cussed. 

We find it of interest, in addition, to check the 
possibility of calculating the coefficient of absorp-

l)When the manuscript was being readied for press, the au­
thors learned of the pending publication of a paper by Uritskii 
and Shuster[•], in which the impossibility of the effect in ques­
tion is also pointed out. The authors are grateful to Z. I. 
Uritskii and G. V. Shuster for the opportunity to become ac­
quainted with this paper prior to publication. 

tion by usual perturbation-theory methods [5]. All 
the possible processes of importance to us are 
shown in Figs. 1-3. Figure 1 pertains to the case 
WH > w0• In this case, as can be readily verified, 
the absorption of a quantum can be connected only 
with a transition to a higher Landau level. The 
resonance frequencies will be w = wH"' w0• (The 
upper and lower signs will pertain henceforth to 
phonon emission and absorption, respectively). 
The case WH < w0 is shown in Fig. 2. In this case 
only transitions with phonon emission are possible, 
the upward transitions (Fig. 2a) causing resonance 
at w = w0 + wH, and the downward transitions 
(Fig. 2b) at w = w0 - wH. Finally, Fig. 3 shows 

FIG. 1. Transitions that lead to resonant absorption if the 
cyclotron frequency wH is larger than the frequency of the 
optical phonons W 0 • 

a b 

FIG. 2. Transitions which lead to resonant absorption if 
the cyclotron frequency wH is smaller than the frequency of 
the optical phonons w0 : a - transitions of an electron from a 
lower Landau level to a higher one, b - transitions of an 
electron from a higher Landau level to a lower one. 
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FIG. 3. Transitions which lead to resonant absorption 

when the electron remains on the same Landau level. 

transitions in which the electron remains on the 
same Landau level. 

It is obvious that, just as in the case of mag­
netophonon resonance, umklapp is possible not 
only between neighboring Landau levels. There­
fore WH can be replaced by its multiple mwH 

both in the diagrams and under resonance condi­
tions. When wH "'=' w0 the cyclotron -phonon reso­
nance will occur at frequencies w "'=' m'wH. The 
resonance m' = 0 will by its nature be magneto­
phonon, since it corresponds to a "static" field. 
The resonance at m' = 1 occurs at cyclotron fre­
quency, and the processes in question yield 
simply a correction to the ordinary cyclotron 
resonance, which is obtained without phonon 
participation. The resonances at m' = 2, 3, ... 
correspond to multiple cyclotron frequency; they 
can also be obtained without phonon participation, 
if account is taken of the spatial inhomogeneity of 
the high-frequency field. 

It is obvious that cyclotron-phonon resonance 
can be observed only provided all the levels are 
sufficiently narrow and the frequencies are suf­
ficiently monochromatic. The Landau levels are 
smeared by the longitudinal thermal motion by an 
amount T and by the collisions with the lattice 
by an amount T - 1, which is determined by the 
electron relaxation time T. (Here and throughout 
ti = 1 and k = 1, i.e., the temperature and the 
frequencies are measured in energy units.) 
Therefore, dis regarding the "static" case, we 
shall assume that the frequency is high ( w T » 1 ), 
the magnetic field is strong ( WHT » 1 ) and 
quantizing ( WH » T ). The phonon frequency will 
be monochromatic if interaction takes place with 
the long-wave optical phonons. The characteristic 
lengths that determine the variation of the wave 
function of the electron in the magnetic field H 
will be: the thermal length i\.T = (2m T) - 1/ 2 for 
the direction along the field, and the magnetic 
length "-H = ( 2mwH )- 112 for the direction trans­
verse to the field. For all real fields and temper­
atures, these lengths are large compared with the 
lattice constant, and therefore the significant 
phonons will be long-wave. We note that under the 
conditions assumed "-H « "-T· 

1. GENERAL FORMULA FOR THE ABSORPTION 
COEFFICIENT 

The absorption coefficient K ( w ) connected 
with the described transitions can be calculated 
by the same method as was proposed by Frohlich[5J 
for the calculation of infrared absorption by free 
carriers. The entire difference lies only in the 
fact that in our problem the states of the carriers 
are quantized in the magnetic field. In this method 
the interaction between the electrons and the high 
frequency field HR or the lattice HL are regarded 
as perturbations, which are turned on simultane­
ously and cause transitions of the required type 
in the second order of perturbation theory in 
H' = HR + HL· 

Assume that a certain initial state 

ji) = Ja, ... N(q) ... , ... N(k) ... ) - Ja, 0, 0) (1.1) 

is described by the state of the electron a and by 
the occupation numbers of the phonons N ( q) and 
of the photons N ( k ) . Here q and k are the pho­
non and photon momenta; the phonons are assumed 
longitudinal, and it is understood that the photon 
polarization is defined. We are interested in a 
transition to the final state due to the absorption 
of a phonon 

if>= Ja', ... N(q)+i, ... , ... N(k)-1 .. .) 

- J a', ±q, -k), (1.2) 

at which the state of the electron changes and 
emission or absorption of a phonon takes place. 

The Hamiltonian of such a transition will be 

H =\ H'(H0 - E)-1H' 

= HL(H0 - E)-1Hn + HR(H0 - E)-1HL, (1.3) 

where H0 is the energy of the interacting elec­
trons, phonons, and photons. All terms containing 
either HL or HR twice have been discarded, 
since they do not yield transitions of interest to 
us. The matrix elements of the transition will be 

<iJHjj) = ~ (ijHLjv) <vJHRjf) + ~ (ijHRjv) (vjHLJf>_ 
E; -Ev E; -Ev 

v v (1.4) 
In the first term of (1.4) the transitions go 
through virtual states jv >=I a",± q, 0 ), i.e., 
at first the number of phonons changes, and then 
the number of photons. In the second term 
jv) = Ja", 0, -k), i.e., at first the number of 
photon changes, and then the number of phonons. 
Figures 1, 2, and 3 show these two types of 
transitions on the left and on the right, respec­
tively. 

The absorption coefficient is now calculated in 
the following manner [s, 7]: 
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K ( w) = y'E ( w) n ____.:!:::___( 1 - e-"'IT) 
c N(w) 

X Av;~ 2:rtl(iiHif>I 2 6(E;-Et). (1.5) 

Here E ( w) is the real part of the dielectric con­
stant, for which, by assumption, there is no dis­
persion in the considered region of frequencies. 
c is the velocity of light in vacuum, n the elec­
tron concentration, V the normalization volume, 
and N ( w ) the number of photons in the initial 
state with frequency w = ck/.f€(:;;). The summa­
tion over the final states f denotes summation 
over a and ± q. Averaging over the initial states 
i is formal averaging over a and N ( q ). Since 
we are considering only the absorption of photons, 
we introduce the factor in the round brackets, 
which takes into account the stimulated emission 
of the photons [B]. 

Written down in greater detail, the matrix 
element of the transition (1.4) takes the form 

(a, 0, OIHI a',+ q,- k) 

= ~ [ (a, OIHRia",- k)(a", OIHLia', + q) 

a" Ea - Ea" + W 

+ (a, OIHL Ia", + q) (a", OIHRI a',- k) J. 
Ea- Ea" + w(q) 

(1.6) 

The difference of the energies in the 6-function is 

E;- Et = Ea- Ea' + w(q) + W. (1.7) 

Therefore, from the energy denominator in the 
second term we can eliminate the frequency of 
the phonon, replacing it by Ea - Ea" - w. 

The Hamiltonians of the perturbations HL and 
HR are taken in the usual form. The interaction 
with the lattice is 

HL = ~icqeiqrbq + c.c. (1.8) 
q 

Here b is the phonon vanishing operator. In 
place o~ cq it will be convenient to use the quan­
tity 

(1.9) 

which does not depend on the normalization 
volume. As usual, we shall assume that B ( q) and 
w ( q) are isotropic. The interaction with the high 
frequency field is 

where 

H - e PA' 
R-- ' me 

(1.10) 

e 
P =- iV +-AO (1.11) 

c 
is the generalized momentum in a constant mag­
netic field with vector potential A 0, and A' is the 

vector potential of the high frequency field. In the 
quantized form 

' ~ ( 2:n:c2 )'/• "k A = f WE (w) V eke' •ak + c.c., (1.12) 

where ek is a unit polarization vector and ak is 
the photon vanishing operator. 

To calculate the matrix elements we choose H 
along z and A0 = - Hy along x. Then a = ( lPxPz ). 
The characteristic quantity for Pz is the thermal 
momentum PT = A.;f, and for Px it is the mag­
netic momentum PH = A.fl. The matrix elements 
of the interaction with the lattice are expressed 
in the following form: 

(lPxPz, 0 IHL il'px'pz', +q) 

= +icq(N(q) + 1/2 + 1/2)6(px, Px' + qx)b(pz, Pz' ± qz) 

X exp {±2pxqy I PH2}.Mzl'(+q_r_), (1.13) 

where 
+co 

Mu' (q_1_) = 1 dy <Dz• (Y) eiqvy<Dz' ( y + ~J;) (1.14) 

is the integral with oscillator functions wz . If we 
introduce in the qxqy plane the polar coordinates 
q1 and cp, then 

Mw(q.L) = exp {-iqxqy I PH2} expi(l'-ll<PQw(q.L I PH). (1.15) 

We have introduced here the function Q usually 
employed in such problems, connected with the 
generalized Laguerre polynomial L by 

Qw(x) = (-1) 1-Z'Ql'l(x), (1.16) 

with 

Qw(x) = (-1)1-l'(l'! I l!)'l•x1- 1'L1J-Z'(x2)c-><'/, (1.17) 

for l > l'. The La~uerre polynomials are defined 
in accordance with 9]. 

In the calculation of the matrix elements of the 
interaction HR the field is assumed uniform, i.e., 
we stipulate in fact that A.» AT and AH, thus 
imposing a lower bound on the temperature and 
an upper bound on the magnetic field. Under these 
assumptions, the transitions will be dipole and 

e ( 2:rtc2 )''' (a,OIHRia',-k)=-N(w)'i, ( )V (a!Pia'), 
me WE w , 

(1.18) 

where P is the projection of (1.11) on the polari­
zation direction ek. 

In calculating the absorption for linear polari­
zation, it is convenient to choose ek in the y 
direction, and then 

(a!Pja') = (lPxPz!Pil'px'pz') = b(Px, Px')b(Pz, pz')Pu', 

(1.19) 
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where Pll' are matrix elements of the momentum 
for the oscillator. 

Substituting all the intermediate results in (1.6), 
we find from the square of the transition matrix 
element 

l<iiHI/>12 = (mec)2N(w) 2nc2 (2n)3 B(q) 
we(w) V V 

X (N(q) + ~ + ~) 1\(px, px' + qx)b(pz, P~' + qz) 

(1.20) 

I 
~ [ Pu"Ml"l' , Mw·Pl"l' J 12 

lJw(q.L)= 7 WH(l-l")+w 1 WH(l'-l")-w · 

(1.21) 

The dependence of Dzl' on ql is determined by 
the corresponding dependence in MZZ '. Substituting 
in the sum over l" the explicit expressions for 
Pll' and Mll' in accordance with (1.15), and using 
the recurrence relations for the Laguerre poly­
nomials, we can show that 

Dw(q.L)= I ei: + e-icp 12_!_2(q.L Y I Ow(q.L)I2· 
WH w WH- w PH! PH 

(1.22) 

We now substitute (1.20) in expression (1.5) for 
K and go over to integration with respect to q. 
The integration with respect to cp is easily 
carried out, since cp enters only in (1.22). The 
thermal averaging over the phonons leads to re­
placement of N ( q) by the Planck functions 
NT ( q ). The thermal averaging over the electrons 
leads to the appearance of a Boltzmann distribu­
tion (normalized to unity) 

(1.23) 

where the distribution at the Landau level is 

w(pz) = ___;_exp{- (!!!__ t} (1.24) 
"J'npT PT 

and the distribution over these levels is 

As a result we obtain 

K(w) = K+(w) + K-(w), (1.26) 

where K+ and K- are the contributions made to 
the absorption by the processes with emission and 
absorption of a phonon, respectively. They are 
given by 

K±(w)= ~ Kzt'(w), (1.27) 
l,l'=O 

where Kzz' is the contribution from the transitions 

of the electron from the Landau level l to the 
level l'. Here 

+oo +oo 
Kw±( w) =A (w) Wz ~ dpllw(pll) ~ dqll 

(1.28) 

In the integration q2 = qf1 + q}_. The factor A ( w) 

is a slowly varying function of the frequency, and 
does not contain singularities anywhere except the 
point w = WH, which is of no interest to us: 

A(w) = -1 (2:n:) 3naR-1-[ --1- --~+ ~---1--J. 
4 m 2w _ (w+wHr (w-wH)2 

(1.29) 

The coupling constant of the electrons with the 
high frequency field is 

2. FORM, INTENSITY, AND LOCATION OF 
ABSORPTION PEAKS 

(1.30) 

In accordance with the conditions indicated in 
the introduction for observing cyclotron -phonon 
resonance, let us consider the optical phonons 
without dispersion, i.e., w(q) = w0 and low tem­
peratures T « w0 , wH. Then integration with re­
spect to ql is not connected with temperature and 
leads to the function 

cDw(qll) = ~ dq.1.q.1.3B(q) I Qu, ( q.L ) 1
2 (2.1) 

0 PH 

B ( q) is usually a power-law function and there­
fore does not have a characteristic variation in­
terval. The characteristic interval of variation 
of <I> is determined by the function Q, and is 
therefore equal to PH· 

The formula for the absorption coefficient can 
be represented now in the form 

Kw±(w) =A (w) [No+-~+-~ J Wz 

X ~ dprrw(pll) ~ dqllcDw(qll) 

X b [ w- cuw±- 2~ ( qll2 - 2Prlqll)] , (2.2) 

where we have introduced the resonant frequen­
cies 

Wu•± = (l' - l) wu + Wo. (2.3) 
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Owing to the 6 function, the absorption has 
singu-larities at the points Wll'±. The distances 
between these singularities are of the order of 
wH (or w0, which we assume to be of the same 
order). The character of the singularity can be 
investigated by assuming that the deviation from 
resonance is I ~w I= I w - wzz,± I « WH· Then, 
owing to the factors w and 6, the only essential 
region of integration in the double integral (2 .2) 
with respect to PII and qll is the one with dimen­
sions determined by the larger of the quantities 
PT or ( 2m~w )112• Since both these quantities are 
much smaller than PH• we can assume in the inves­
tigation of the character of the singularity that 
the function <I> is constant, and put in it qll = 0. 

Thus, the character of the singularity of all the 
peaks is the same and is determined by the inte­
gral 

+co +co [ 1 J ~ dpw(p) ~ dq6 IJ.w- 2m (q2 -2pq) . (2 .4) 
-oo -oo 

This integral can be calculated in general form 
by means of the Bessel function K0, leading to the 
following relation: 

et."'/2T Ko ( I Aw I I 2T). (2 .5) 

Using the asymptotic behavior of the function K0 , 

we can readily clarify the character of the singu­
larity. To the right of the resonant point ~w > 0, 
and far away from it, at distances ~w » T, the 
singularity has a root-like ch~racter ~ ~w- 1/2 , 
going over at short distances when ~w « T into 
a logarithmic singularity, ~ln~w. To the left of 
the resonant point ~w < 0, and near it, where 
I ~w I « T, the singularity is also logarithmic, 
but far from it, at I ~w I » T, an exponential de­
crease I ~w l- 112 exp ( -I ~w liT) is superimposed 
on the root singularity. This is perfectly under­
standable, for when the photon energy is "insuffi­
cient," ~w < 0, the transition occurs as a result 
of the Maxwellian tail of the electrons on the 
initial Landau level. 

The logarithmic singularity becomes smeared 
out because of the collisional width of the level 
T- 1, i.e., over distances I ~w I~ T- 1 which, by 
assumption, are much smaller than T. Another 
cause of the smearing of the singularity is the 
dispersion of the optical phonons. 

We now proceed to estimate the intensity of 
the resonant peaks. To this end it is necessary to 
calculate <l>zz' ( 0 ), which depends on the scatter­
ing mechanism. For polarization scattering by 
optical phonons (PO) we have 

B 1 1 Po 1 (2 .6) 
(q) = (2n:)3 n:r;;-mq2; 

for deformation scattering (DO) 

1 1 1 
B(q) = --n---

(2n)3 To mpo · 
(2.7) 

Here Po = ( 2mw0 )1/ 2 and To is the characteristic 
time (the relaxation time at low temperatures per 
phonon). The dimensionless constant for the 
coupling between the electrons and the lattice, 
aL, can be introduced in accordance with the re­
lation T 0- 1 = 2aLw0• We then obtain 

(2.8) 
DO: !l>w{O) = (2n)-3n2'1•m'l•aLwo'l•w!?(l + l' + 1). 

It is clear from this that <I>, as well as the factor 
A, influences little the dependence of the intensity 
of the peak on l or l'. 

Thus, the dependence of the intensity on l' is 
in general weak, and the dependence on l is de­
termined by the number of electrons at the initial 
level wz. Leaving out common and slowly-varying 
factors, we have 

(2.9) 

The same factors determine the most essential 
dependence on the temperature and on the mag­
netic field. 

Let us consider the locations and the intensities 
of the resonant peaks. If WH > w0 , then the emis­
sion peaks are situated at the points w = mwH 
+ w0, m = 0, 1, 2, ... , and the absorption peaks 
are located at the points w = mwH - w 0 , 

m = 1, 2, ... The transitions that make the prin­
cipal contribution to the intensity will be those 
from the lower level, i.e., l = 0, l' = m. The ab­
sorption satellites have an intensity which is 
exp ( -w0/T ) times smaller. The lines and the 
decisive transitions are shown in Fig. 4. 

If wH < w 0, then the picture is more compli­
cated. Figure 5 shows the case 2WH < w0 < 3wH. 
The emission peaks are situated at the points 
w = mwH + w0, m = -2, -1, 0, + 1, +2, +3, ... 
When m < 0, the decisive transitions are those 
from the upper levels, i.e., l = lml, l' = 0. The 
intensity of these peaks decreases with increasing 
lmllike exp(-lmlwH/T). When m~o. thede­
cisive transitions will be those from the lower 
level, i.e., l = 0, l' = m. The absorption peaks 
will be at w = mwH - w0, m = 3, 4, ... The de­
cisive transitions will be from the lower level. 
Because of the factor exp ( -w0/T ), they are 
lower than even the emission peaks connected with 
the transitions from the upper levels. 

In both cases, at large values of m the intensi­
ties of the peaks decrease like m -a for PO and 
m-2 for DO. 
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3. DISCUSSION OF RESULTS AND POSSIBILITIES 
OF EXPERIMENTAL OBSERVATION 

The singularity of the absorption peak of cy­
clotron-phonon resonance has the same origin as 
in magnetophonon resonance, i.e., it is connected 
with the presence of singularities in the density 
of the initial and final states [2]. To verify this, 
we can represent the absorption coefficient 
schematically in the same form as the magneto­
conductivity axx in [2], namely 

K ~ ~ deg(e)f(e)~ de'g(e')W(e,e')b(e'-e-w±wo) 

= ~ dc.g (e) j (e) g ( e + w + wo) W (e) . ( 3 .1) 

Here f (E) is the population of the initial level 
E, W ( E, E' ) is a regular function connected with ' 
the matrix element of the transition to the final 
state E', and g (E) is the density of the state in 
the magnetic field, which has root singularities at 
the points Ez = wH ( l + % ) . If w is close to one 
of the frequencies wzl'±, then the integrable sin­
gularities of g (E) in EZ and of g ( E') in El' 
coincide; the product g ( E) g ( E') already has a 
non-integrable singularity, and this leads to a sin­
gularity in the absorption coefficient. Its charac­
ter can be determined by disregarding the regular 
factors f ( E) and W ( E), so that 

K ~ ~ de[ ( e - ez) ( e- ez + ~w) ]-,;, ~ In I ~w 1. ( 3.2) 

However, as T - 0 the population f (E) also 
becomes singular. More accurately speaking, 

g (e) f (e) --+ 6 ( e - ez). (3.3) 

Therefore in this case 

K ~ ~de o(e- ez) (e- e1 + ~w)-,f, 

{ 0, if 
= ~(J):_,f, , 

~w<O, 

if ~(I)> 0. (3.4) 

This is the meaning of the transformation of the 
logarithmic singularity into a root singularity on 
moving away from the resonance point. In other 
words, when T- 0 the singularity of the absorp­
tion coefficient duplicates the singularity of the 
state density. 

Unlike static magnetophonon resonance, cyclo­
tron -phonon resonance does not contain the small 
factor exp (- w0/T) for the emission lines. This 
is connec ;ed with the fact that in a static field at 
low temperatures, the interaction between the 
electron and the lattice must begin from the ab­
sorption of the phonon (after which follows in­
stantaneous re-emission). The probability of such 
a composite scattering is determined by the first 

stage, and is therefore exponentially small. The 
high frequency field throws the electrons into the 
region E > w 0, and preliminary absorption of the 
phonon becomes unnecessary-emission takes 
place immediately. However, the cyclotron­
phonon resonance contains another small factor 
aR, which is missing in magnetophonon resonance. 

The method employed for calculatin~ K is 
connected with the limitation w T » 1 [S and it is 
therefore incorrect to make the transition 
w - 0 in order to obtain the static conductivity 
axx in a magnetic field. In spite of this fact, 
putting formally w = 0, we obtain the main quali­
tative singularities of the static magnetophonon 
resonance (the character of the singularity). The 
point is, apparently, that since the resonant fre­
quencies are determined from the energy conser­
vation law, and the character of the singularity at 
these frequencies is determined from the state 
density, these qualitative singularities are in 
general independent of the method of calculation. 
This does not pertain, however, to the amplitude 
of the singularity, which, as can be seen from 
(1.29), becomes infinite when the method is used 
in conjunction with the invalid transition w - 0. 

We now consider the conditions for an experi­
mental observation of cyclotron-phonon resonance. 
It should be observed in the form of oscillations 
with frequency wH for the function K ( w ) against 
the background of ordinary cyclotron resonance 
with an absorption coefficient 

1 ne2 't 
Kc(w) =· ~----

cy'e((J)) m 1 +((I}- wH)2't2 
(3.5) 

and lattice absorption by transverse optical pho­
nons 

1 (J)2y 
KL((J)) =----==(J)t2(eo-eoo) (3.6) 

cy' e ((I}) ( 002 - (I} 12) 2 + w2y2 

Here wt = w 0 ( E 00/ Eo )112 is the frequency of the 
transverse phonons, Eo and E 00 are the static and 
high -frequency dielectric constants, and /' is the 
level width connected with the anharmonicity. 
Since the frequencies of the cyclotron-phonon 
resonance are shifted from the cyclotron-reso­
nance frequency by at least w0 (when m = 1 ), and 
since w T 0 » 1, the peak of the cyclotron -phonon 
resonance will be observed in the far region of 
the wings of the cyclotron resonance. 

Let us compare now the intensity of the princi­
pal line K 0 with Kc at the frequency w = wH 
+ w0. Assuming that I WH - w0 I ~ WH ~ w0 and 
that the dimensionless factor (2.5) is of the order 
of unity, we obtain from (2.2) 

(3.7) 
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For cyclotron resonance we have when 
lw- WHIr» 1 

(3.8) 

Thus, the ratio K0/Kc, (and of course also 
KQi,/Kc) contains the large parameter ( w0/T )112. 
Therefore the absorption oscillations connected 
with the cyclotron -phonon resonance will be small 
against the background of cyclotron resonance. 

It must be noted here that the presence of the 
factor Cl!L and Kc is connected precisely with the 
fact that we are considering absorption on the 
wings; at the maximum, i.e., when I w -wHIr 
« 1, we have 

(3.9) 

Let us make some numerical estimates, using 
InSb as an example. We have in accordance 
with [1oJ 

eo= 17.5 Boo= 16, 
wo = w1 = 3.7 ·1013 sec - 1 (50 fJ. ) , aL = 0.014. 

Using m = 0.015m0 we find that WH = w 0 when 
H = 32 kG. Thus, the situation shown in Fig. 5, 
where wH < w0, can be readily attained; the 
situation on Fig. 4, where wH > w0, is also 
feasible although much more difficult to obtain. 

roor rott 

FIG. 4. Location and relative magnitude of the absorption 
peaks when wH > w 0 • Each peak is marked by the transition 
(ll') ±, which makes the main contribution to its intensity. 
Here l and l' are the numbers of the initial and final Landau 
levels, and the ± sign indicates that the transition is accom­
panied by emission (absorption) of a phonon. 

FIG. 5. Location and relative magnitude of the absorption 
peaks for 2wH < w0 < 3wH. The notation is the same as in 
Fig. 4. 

The intensity of the cyclotron-phonon reso­
nance is low even at its maximum, since it does 
not become infinite when Cl!L- 0. This is con­
nected with the logarithmic character of the 

singularity; thus, aLlnaL- 0, whereas for 
cyclotron resonance Cl!L ( Cl!L )- 2 - ""· Therefore, 
apparently, to observe cyclotron-phonon absorp­
tion it is necessary to use samples with appreci­
able electron concentration. Suitable for this 
purpose are samples with n = 1016 em - 3 and 
mobility fJ. = 105 cm2/V-sec at T = 80°K. Then 
w0r ~ 40, so that even fields of 10 kG are strong 
in the classical sense. To be sure, the quantizing 
properties will not be too good: w0/T ~ 3 at 80°K, 
so that wHIT ~ 1 at 10 kG. This difficulty is in 
fact encountered also in experiments on magneto­
phonon resonance at nitrogen temperatures. The 
transition to hydrogen temperatures T = 20oK 
would make the strong-field criterion somewhat 
worse, but would improve greatly the quantization 
criterion. 

Assuming that Cl!R ~ 10- 3 and Cl!L ,..., 10-2, we 
obtain for such samples K01 ,..., 10 em - 1• This is 
small compared with the lattice absorption, for 
which KL,..., 104 cm- 1 at the maximum and KL 
""'102 cm- 1 on the wings at lw- wtl ,..., w0• How­
ever, KL gives a monotonic background, which 
apparently can be excluded with the aid of (3.6). 

If the scattering of the electrons by the optical 
phonons is not dominating, and the scattering 
by acoustical phonons is also present, then the 
latter will make a contribution to the absorption 
coefficient; this contribution can be calculated 
with the aid of the general formula (1.28). How­
ever, this contribution will be a monotonic func­
tion of w. It must be borne in mind that when 
comparing the role of the acoustic and optical 
scatterings, the latter must be taken without the 
small factor exp ( -w0/T ). Therefore, the lower­
ing of the temperature will not weaken the cyclo­
tron-phonon absorption, unlike the magnetophonon 
effect. 

We note also that the cyclotron-phonon reso­
nance can be observed also for the phonons 
(optical or acoustical) responsible for the inter­
line scattering in semiconductors with several 
energy minima. In this case, resonance absorp­
tion is accompanied by electron transfer from one 
Landau level in one minimum to another Landau 
level in another minimum. If we assume both 
minima to be spherical with identical effective 
masses, then the corresponding contribution to the 
absorption can be calculated by means of formula 
(3.2) in the same manner as for DO scattering, 
for the matrix element of the transition B ( q) for 
intervalley transitions can be regarded as inde­
pendent of q [tt]. The meaning of w0 and r 0 

changes accordingly, but their order of magnitude 
remains the same. In the case of anisotropy of 
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the minima, the effect can become complicated by 
different values of WH at these minima for a 
common orientation of the magnetic field, but 
qualitatively its character remains the same. The 
formulas obtained then lead to an order-of-mag­
nitude estimate2'. 

In a more complete theory it would be neces­
sary to take into account the spin of the electron, 
its orientation in the constant magnetic field (the 
Zeeman splitting of the Landau levels), and the 
spin-orbit coupling. Transitions in which phonons 
participate could then lead to flipping of the elec­
tron spin, which is similar in some degree to 
Rashba's combined resonance [t3J. 
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