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A reaction of the A +A- - A +A + e type is considered. The effective potential of system 
A2, in the field of which a weakly bound electron moves, is represented by two short-range 
potential wells. It is assumed that the bound state of Az vanishes and disintegrates when the 
nuclei approach each other. The angular and energy distributions of the emitted particles are 
calculated for symmetric and antisymmetric states. It is shown that account of the finite size 
of the system produces an unexpectedly small change in the energy spectrum of the electrons. 
A general system of equations is deduced for the motion of a particle in the field of moving 
short-range potential wells of variable depth. 

1. INTRODUCTION 

IN our preceding paper[!] we considered the de
tachment of an electron in collisions of the type 
A- + B under the assumption that when the atom 
and the ion come closer together the ~ term AB
merges with the molecule term AB, the weakly 
bound electron becomes unstable, and decay takes 
place. We have obtained the momentum distribu
tion of the outgoing electrons and the decay proba
bility, but the region of applicability of the theory 
was limited primarily by the fact that the system 
AB was replaced by an effective potential well, 
whose radius was assumed small compared with 
the wavelength of the outgoing electrons. Yet the 
distance R0 between the atom and the ion, at 
which the binding energy E ( R) vanishes, can be 
quite large. At the same time, the momentum of 
the outgoing electrons k decreases very slowly 
with decreasing velocity V of the colliding parti
cles (like v1/ 3), so that the criterion of applica
bility of the theory kR0 « 1 is satisfied only for 
very small velocities V. 

In the present investigation we succeeded in 
getting rid of this limitation, replacing the system 
AB by an effective potential in the form of two 
small-radius wells -an approximately recently 
used by Firsov and Smirnov [2]. We are consider
ing the collision of an ion with its parent atom, 
i.e., a reaction of the type 

A +A--+A +A+ e. 

It turns out that, in the decay of the symmetrical 
and antisymmetrical states, the approximation 
with zero effective radius gives reasonable re
sults for the outgoing electrons far beyond the 
limits of the criterion written out above. 

The antisymmetrical state, which leads to the 
p state for the weakly bound proton in the case 
when the binding energy E tends to zero, yields 
essentially a different spectrum from that ob
tained from the decay of the symmetrical state 
corresponding to l = 0 ( s state ) and considered 
in [t]. It is possible to generalize the results to 
include states that correspond to higher values of 
l in the limit as E -0. 

The initial, power-law part of the low-energy 
electron spectrum does not depend on the explicit 
form of the effective potential well and is deter
mined completely by the first terms of the ex
pansion of E ( R) in the vicinity of R0• Actually, 
the spectrum is determined only by such quanti
ties as the volume of the phase space etc. (simi
lar, for example, to the behavior of the spectrum 
of the low-energy neutrino in fJ decay). 

It must be noted that whereas problems in
volving excitation, charge exchange, etc. can be 
reduced after suitable schematization to a system 
of several differential equations, the interaction 
with the continuous spectrum leads even after 
simplification to partial differential equations, 
i.e., to the solution of diffraction problems, to the 
solution of equations of the heat conduction type, 
etc. 
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2. EQUATION OF MOTION OF A PARTICLE IN 
THE FIELD OF MOVING POTENTIAL WELLS 
OF SMALL RADIUS 

Assume that there are N small-radius poten
tial wells, the positions of which are characterized 
byvectors Ri(t), i=1, 2, ... ,N. Goingoverto 
the zero-effective-radius approximation (see, for 
example, [1•2] ), we find that the wave function 
7./J ( r, t) of the particle should have in the vicinity 
of each well the form 

'IJ(r,t)=A;(t) [ lr-~R;I +/;(t)]+O(Ir-R;I). (1) 

The functions fi ( t) characterize the depth of each 
well, which can depend on the time. If fi < 0 then 
a bound state exists in the isolated well, but if 
fi > .0 the well is shallow and there is no such 
bound state. The transition fi ------+ oo corresponds 
to a well depth tending to zero-the wave function 
then becomes regular at the point Ri. 

We write down the nonstationary Schrodinger 
equation for this problem: 

1 a N (- z V2 - i ai) 'lJ = 2n'.~ A,; (t) o (r- Ri (t)). (2) 
)=1 

Using a Green's function, we can write a formal 
solution of this equation 

1 N \~ , r . I r - Ri (t') 12 J dt' 
'IJ(r, t)=~~ .l Aj(t )expl ~ ----, 

)'2ni. L 2(t-t') (t-t')'f, 
J=1 -oo 

(3) 

from which we see that the wave function can be 
constructed if one knows N time-dependent func
tions Aj ( t ). 

Let us go in (3) to the limit as r ------ Ri ( t ), 
subtract the diverging term from the right and 
left sides, and take formula (1) into account. We 
obtain a system of integral equations for the 
functions Ai 

/;(t)A;(t) = 1 . § ~ [Ai(t')exp( i !R;(t)- Ri(t') 12 ) 

)'2ni j=!-oo ' 2(t- t') · 

J dt' -A-t .. 
t ( ) {l,J ~ t') '(, . (4) 

The correctness of the obtained system can be 
readily verified for different particular cases. 
Thus, if there is one stationary well of valuable 
depth, then the system (4) can be readily trans
formed into the integral equation obtained in [1]. 

If all the wells are stationary and of constant 
depth, then, assuming that all the Ai ( t) depend 
harmonically on the time, we arrive at an alge
braic system of linear equations for Ai, which 
makes it possible to find the stationary states. 

This system can be readily obtained also directly 
from condition (1 ). Finally, if there is one uni
formly moving well of constant depth, then the 
wave function for it can be written immediately 
by using the Galileo principle. It is easy to verify 
that this function agrees with (4). 

Thus, the solution of the partial differential 
equation has been reduced to a solution of a sys
tem of homogeneous integral Volterra equations 
for functions of one variable t. This has greatly 
simplified the problem. These equations can be 
solved also numerically, for example by the 
method of steps. It can be assumed that the model 
considered here will be useful for a great variety 
of problems. 

3. APPROXIMATION OF TWO WELLS OF SMALL 
RADIUS 

We now replace the real problem of the collision 
between the atom and the ion by the problem of the 
motion of the electron in the field of two wells of 
small radius. Such an approximation was used 
earlier for this problem by Smirnov and Firsov [2] 

to estimate the value of Ro, and by the same token 
the cross section for electron detachment. The 
dynamics of the process was not considered in [2]. 

Strictly speaking, we would have to consider 
two moving wells of constant depth and to specify 
the trajectory of their relative motion. However, 
the problem cannot be solved exactly even in the 
simplest approximation of straight-line travel. In 
addition, we assume that the nuclei move slowly, 
so that the process occurs essentially near 
R ~ R0• It is therefore permissible to consider 
two stationary wells located at a distance R = R0 

from each other, but of variable depth, and to 
choose the rate of change of the well depths such 
that the binding energy varies with time in the 
same manner as in the real motion. Further, in
asmuch as only the behavior of the terms in the 
region where the electron ceases to be bound is 
of importance, we can, just as in [1], assume that 
f1 and f2 are linear functions of the time and pay 
no attention to their behavior as t ------ ± CG, which 
does not influence the spectrum of the emitted 
electrons. 

Finally, we confine ourselves to the case of 
two identical wells, i.e., we assume that f1 = f2 

(the reaction A +A- ------A +A +e). This case is 
of fundamental interest and admits of an exact 
solution. Putting 

/1 = /z = ~t, A±= A1 ± Az, Rz- R1 = R = const, 

we obtain from the system (4) an equation for A±: 
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1' t [ 
ptA±(t)=-,=J A±(t')-A±(t) 

l'2m -oo 

+A± t' X• i ( R2 )] dt' 
- ( )e P 2(t-t') (t-t')'h" (5) 

Since the kernel of the integral equation depends 
only on the difference t - t', and in the left side 
the coefficient of A± is linear, we solve the equa
tion by the Laplace method. We obtain 

An investigation of the transition to the limit as 
t - - "", similar to that in [1], enables us to de
termine the contour whose branches go off to 
infinity in the directions arg v = -1r/2 and 
arg v = 7r/4. 

Substituting the obtained expression for A in 
(3), we obtain the wave function 

1Jl(r, t) = B ~ exp{-~ ( ~3 + ;:R (1 + vR)) + ~~2 t J 

r exp(-vlr- Rd) exp(-vlr- R2 1) J 
X, I R I + I R I vdv. '- r- 1 r- 2 

(7) 

It follows directly from this formula that 1/J is the 
solution of the Schrodinger equation for a free 
particle everywhere except the points r = R1 and 
r = R2• 

Let us go over to the momentum representation. 
Then 

2B 
<p(k, t) = -=-[exp(-ikR1)± exp(-ikR2)] 

l'2n 

\ [ i ( va e-vR · ) iv2 J v dv 
X ~exp p 3"+R3(1+vR) +2 t v2 +k2 • (8) 

Finally, repeating verbatim the reasoning of [1J, 
we find that as t - + "" the momentum distribu
tion for the outgoing electrons is determined by 
the residue of the integrand at v = - ik. We obtain 
the distribution 

li;2 
w (k) = 2n(i [1 + cos(kR cos 8)1 

X exp [- : ~ ( 1.' + ~i:, ~ R ) k'2 dk' J, (9) 

or, after averaging over the angles, 

2k2 ( sinkR) 
w(k)=-~-\ 1+-kR 

[ 2 ~ ( , sin k'R \ J 
X exp - -~ ~ 1 + ---,;;]l) k'2 dk' . (10) 

The undetermined factor B in formula (8) has been 
replaced in (9) and (10) by the factor that follows 
from the normalization condition. 

4. DISCUSSION 

We first express the parameter {1, which 
enters in the final result, in terms of the initial 
parameters of the problem: the rate of approach 
of the nuclei VR and the behavior of the terms in 
the vicinity of the coalescence point. The equation 
for·the energy of the stationary state of the 
particle in the field of two identical wells of 
smaller radius with effective depth f is of the form 
(see [2]) 

f+v= +e-rRJR, E= -y2 /2. (11) 

At the point where ')' and E vanish, we have for 
the symmetrical case 

( ~y-) = -l-d2E 1'/, 
oR o dR2 o 

= -(Eo") 'I•. (12) 

Equating the changes of ')' resulting from the 
motion of the nuclei and from the variation of the 
depths of the wells, we obtain 

( ~Y) (!!L) __ ( ay \ ] _dR __ , , I ~ = 2(Eo")'I•(VR)o. (13) 
' of ' 0 dt: 0 'aR I ol dt 0 

This expression for f1 does not contain R0 and 
differs only by a factor of 2 from the analogous 
parameter in [1]. 

If we assume that kR is small and expand the 
exponent and the pre-exponential factor in a 
series, retaining one term in each, we obtain 

4k2 ( 4k3) 
w(k)=-~-exp -a~)' (14) 

which, with account of (13), coincides exactly with 
formula (13) from [1]. This confirms by the same 
token the assumption made in [1] that formul~ (14) 

i~ valid for sufficiently small k even when kR0 

( k is the average momentum) is not small, but 
is comparable with or even larger than unity. On 
the other hand, if .BR5 « 1, then formula (14) is 
applicable practically for all k, and this condi
tion coincides with the condition (20) in [1] 

It must be noted that the symmetrical bound 
state vanishes not when the two potential wells 
come closer together, but when they move apart 
( o')' /a R) < 0, and this vanishing takes place only 
when f > 0, i.e., there is no bound state for an 
isolated well. We can therefore no longer employ 
in this case the approximation of two moving wells 
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of constant depth, and the approximation of sta
tionary wells of variable depth considerd here is 
more suitable for the description of the phenom
enon. 

For the antisymmetrical case we obtain from 
(11) 

(~E) = ~ _1_. 
' of ' o Eo' 

Thus the parameter {3 has in this case the form 

I oE I I oR I , ~=Ro - -- =(VR)oEoRo. 
oR o dt o 

(16) 

In the· case when kR « 1 we obtain the distri
bution 

(17) 

Thus, the approximation used in [t] is not applic
able to this case. The wave function of the weakly 
bound electron retains the antisymmetry as 
R- R0, and depends on the angle like cos (J at 
large distances from the nuclei, i.e., it is a p
function. Then the term corresponding to the 
bound state does not touch the boundary of the 
continuous spectrum, but, as can be seen from 
(15) and (16), crosses the boundary at a certain 
angle. This term is further continued in the con
tinuous spectrum and corresponds to the quasi
stationary state which is produced as a result of 
the presence of a centrifugal potential barrier 
when l ""- 0 (see, for example, [s]). This leads 
to a certain stabilization of the state of the elec
tron and to an increase of the average momentum 
of the emitted electrons, as can be seen from (17). 
For states with l ,r. 0, the zero-effective-radius 
approximation is not applicable directly, but we 
see from (17) that such a transition can still be 
made if we let {3 approach zero simultaneously 
with R0, such that the ratio R2/{3 remains finite. 

The dependence on the angle (J is contained in 
the obtained distribution only in the pre-exponen
tial factor. It has a typical interference character 
and is the result of superposition of two spherical 
outgoing waves eikr /r, shifted a distance R rela
tive to each other. The waves are in phase for 
the symmetrical state, and out of phase for the 
antisymmetrical state. The dependence on the 
angle is symmetrical about (J = rr/2. The sym
metrical state gives a maximum of momentum 
distribution at (J = rr/2, while the antisymmetrical 
state gives zero. If kR < rr/2, then the distribu
tion varies monotonically in the intervals 0 < 0 

< rr/2 and rr/2 < (J < n; on the other hand, inter
ference maxima and minima that reach zero ap
pear if kR > n. In fact, this picture will become 
smeared as a result of the motion of the atom and 
the ion and because of their finite dimensions, 
which we have neglected. In addition, the angle (J 

is measured from the axis joining the nuclei at 
R = Ro, which does not coincide with the direction 
of motion of the incoming particle, so that averag
ing over the impact parameters results in addi
tional smoothing of the angular distribution. The 
latter averaging can be eliminated by recording 
simultaneously the angle of inclination of the 
heavy particle and the direction of the emitted 
electron, i.e., by using a coincidence procedure, 
but this is very difficult to do in our case. We 
shall therefore consider only the averaged cross 
sections. 

5. AVERAGING OVER THE IMPACT PARAME
TERS. EFFECTIVE CROSS SECTION 

We introduce in lieu of the parameter {3 and 
the momentum k the dimensionless quantities 
s = f3R5 and q = kRo. Then, for the normalized 
distribution w ( s, q) we obtain 

w(s, q) = f' (q)s-1 exp (-f(q) / s); (18) 

f(q) = 2/3q3 + (sin q- q cos q)·. (19) 

If we now take into account the collision geometry 
and assume that the ion travels past the atom 
along a straight line with constant velocity V, 
then the quantity ( VR )0, which enters in {3 and s, 
is equal to V cos a, where a is the angle between 
the vector R0 and the direction of ion motion. 

Introducing the parameter s 0 defined by the 
formula s 0 = s/cos a, which characterizes the 
collision as a whole, and assuming that formula 
(18) is valid for all the impact parameters p, we 
obtain, after averaging over p, the effective 
cross section 

n/2 

a(so, q)= 2.n ~ w(soDosa, q)RosinaR0 cosada; (20) 
0 

a(so, q) = 2/'(q) ~ exp (- f(q) )dx 
.nR02 so 0 SoX 

= 2 j'(q) F( j(q) ) ; 
so so 

F(y) = e-Y + y Ei (-y), 

with the function a ( s 0, q )/ ( rrR~) normalized to 
unity with respect to q. 

The curves plotted from (20)-(22) for the 

(21) 

(22) 
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symmetrical and antisymmetrical cases (for 

1.0 

s 0 = 1, and s 0 = 10 ), are shown in Figs. 1 and 2 
respectively. For s 0 = 10 the dashed lines show 
the curves corresponding to the approximate 
formulas (14) and (17), if we put approximately 
f+ (q) = 4qo/3 and r- (q) = q5/15. Although this 
assumption is rigorously valid only when s « 1, 
we see from the plots that even when s 0 = 10 it 
gives good results everywhere except for large q, 
at which the cross section is already small. For 
s 0 = 1, within the scale of the drawing, the ap
proximate curves almost coincide with the accu
rate ones. We see therefore that the approxima
tion with zero effective radius for the forces 
turns out to be unexpectedly good even for rather 
large average outgoing-electron velocities, when 
the wavelength is comparable with the dimensions 
of the system ( q ~ 1 ). It can be assumed that 
even a more accurate account of the finite dim en
sion of the atoms will change the obtained results 
appreciably only when q is large. 

In a real collision, the symmetrical and anti
symmetrical states enter with equal weight, so 
that the spectrum of the outgoing electrons is ob
tained as a result of superposition of the two 
curves. In particular, at a certain ratio of the 
parameters E0, E~. R0 and R0 we can expect to 

FIG. 1 

FIG. 2 

obtain a curve with two maxima as a result of the 
superposition. Unfortunately we do not know the 
parameters E6 and E~, so that we cannot employ 
the obtained formulas for collisions of concrete 
atom -ion pairs. 

To estimate E6 (but not E~) we can use the 
same approximation of two small-radius wells, 
assuming that their effective depth does not vary 
as they come closer together. Then [2] 

q = k I ko = k I -yu; so= VRo = V 1}'21, (23) 

where I is the electron-affinity energy and k0 the 
average momentum of the weakly bound electron. 
If, for example, I = 1 eV, then s 0 = 1 corresponds 
to a nuclear velocity V0 = 0.6 x 108 em/sec, and 
s 0 = 10 corresponds to V = 6 x 108 em/sec. It is 
known, however, that this approximation is not 
good enough even for ions of alkaline metals. The 
determination of E6 and E~ within any degree of 
accuracy apparently calls for rather cumbersome 
variational calculations. One can count more on 
being able to determine these quantities from ex
periment by comparing the experimental and the 
theoretical curves. 
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6. MOTION OF THE POLES OF THE SCATTER
ING MATRIX AND THE QUASI-ADIABATIC 
APPROXIMATION 

At each instant of time the stationary, quasi
stationary, and virtual states of our system are 
characterized by the poles of the S matrix or 
(which is the same) by the zeroes of the J ost 
function on the complex plane E or k (see, for 
example, [3, 4] ). The approximation which we are 
considering here and which can be called quasi
adiabatic, consists in the fact that we are de
scribing the process of the decay of a bound state 
from the point of view of the motion of these 
zeroes (poles) and schematize this motion in a 

ld . 1[1] definite manner. We have so ve prevwus y 
the decay problem, where account was taken of 
only one zero that moved uniformly along the 
imaginary axis in the complex k plane, going 
over from the upper half plane (bound state) to 
the lower one (virtual state). The case considered 
here corresponds to an account of infinite number 
of zeroes on the complex plane of the variable 
q = kR0• The trajectories of these zeroes can be 
readily obtained by solving Eq. (11) for different 
values of the parameter f, which is proportional 
to the time t, and by putting q = i'yR0• For the 
symmetrical and antisymmetrical cases these 
trajectories are shown respectively in Figs. 3 
and 41). For the antisymmetrical case, upon 
vanishing of the bound state, the two zeroes cross 
at the origin and then move apart to the right and 
to the left, forming, as already noticed, the quasi-

1 )All the branches are tangent to the curve Im q = 
-In jRe qj, which is shown dashed in the figures. 

stationary states. The zero-effective-radius ap
proximation corresponds to an account of one of 
the entire infinite number of zeroes, in the sym
metrical case and of two zeroes for the anti
symmetrical case. 

In order for either one of these approximations 
to be applicable, it is necessary that the assumed 
scheme for the motion of the zeroes correspond 
to the real picture in the vicinity of the origin and 
during the course of a definite time interval, after 
the lapse of which the decay has essentially al
ready taken place. According to [1], this condition 
is analogous to the adiabatic Massey criterion and 
has respectively for the symmetrical and, ana
logously, the antisymmetrical case the form 

Eo"(6R) 2 IV~ 1, Eo'(6R) 2 IV~ 1, (24) 

where oR is the region corresponding to the 
linear variation of f, and should obviously be in 
turn much smaller than Ro. i.e., oR « Ro. It is 
possible, however, that the formulas are applica
ble in a somewhat broader interval, so that both 
conditions can be combined and we can write in 
lieu of (24) 

(25) 

The method developed here can be employed to 
carry out the calculations also for two wells of 
unequal depth, and this would make it possible to 
simulate the process of collision of different 
atoms and ions, but then the problem could not be 
solved in analytic form and would call for rather 
laborious numerical calculations. 

In addition to conditions (24) and (25), which 
limit the applicability of the theory from the high
velocity side, there remains in force also the 
limitation from the low-velocity side [1], which is 
connected with the fact that we are considering 
the nuclei classically, specifying their motion 
beforehand, i.e., we regard them as unlimited 
sources of energy. This is precisely why we have 
obtained for the outgoing electrons an energy 
spectrum which is not bounded from above, 
whereas in fact it is bounded by the conservation 
law. In the case when the energy of the colliding 
particles is much larger than the electron
affinity energy (i.e., when classical treatment of 
the nuclei is permissible), the probability of large 
energy transfer to the electron is so small in our 
case (the far exponential region of the spectrum), 
that it is practically indistinguishable from zero. 
In the case, however, when the energy of the 
colliding particles is comparable with the energy 
of the electron affinity (near-threshold region), 
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we must, unless we are especially interested in 
large energy transfer, consider explicitly the 
energy exchange between the moving nuclei and 
the electron, i.e., a quantum description of the 
nuclear motion is essential, and the theory con
sidered here is not valid. 

If a quasistationary state with relatively large 
lifetime is produced as the nuclei come closer 
together in the region R < R0, then for the anti
symmetrical case the zeroes which diverge from 
the origin to the right and to the left will move 
essentially closer to the real axis than on Fig. 4. 
For the symmetrical case (Fig. 3), the zero that 
moves downward can also encounter another zero 
on the imaginary semi -axis in the lower half 
plane near the origin, after which quasistationary 
states are also formed. In these cases the region 
oR will be small and the formulas obtained by us 
will be valid only for sufficiently small V and s 0• 

In place of the analytic properties of the Jost 
function, we can consider this same problem from 
the point of view of the analytic properties of the 
energy terms U ( R ), which are different values 
of one multiple-valued analytic function of the 
complex variable R. An investigation of the 

spectrum of the electrons emitted during the de
cay enables us to investigate the analytic proper
ties of the binding energy E ( R) near the real 
root R0, which is the edge of the cut of the func
tion E ( R ), so that when R < R0 the function 
E ( R) assumes now, generally speaking, complex 
values on the real axis. 

In conclusion, I thank G. F. Drukarev and L. D. 
Faddeev for a discussion of the questions con
sidered in the article. 
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