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The problem of the breakup of an atomic particle in a constant homogeneous electric field is 
considered. An asymptotically exact (in the limit of low field intensity) expression is obtained 
for the probability of the detachment of an electron per unit time. The result obtained is used 
to determine the binding energy of an electron in a negative helium ion from the experimentally 
measured dependence of the lifetime of the ion on the intensity of the external electric field in 
which it is breaking up. The electron affinity energy of a helium atom is 0.06 ± 0.005 eV. The 
cross section for the breaking up of a negative ion by electron impact as a result of which an 
s-electron is liberated has been calculated. For this it is assumed that the break up cross 
section is large compared to the characteristic dimension of a negative ion and that the inci­
dent electron moves in a classical orbit. These assumptions are justified by the result ob­
tained. Two mechanisms of breakup of negative ions are considered: the "squeezing out" of 
a weakly bound electron of a negative ion by the static field of the incident electron and the 
breakup resulting from the time variation of the field of the incident electron. It is shown 
that at high collision velocities the second mechanism gives a result corresponding to the 
Born approximation. The dependence of the cross section for the breakup of H- on the 
velocity of the incident electron is compared to the results of other calculations. 

IN this paper we consider the breakup of atoms 
and of ions in a constant electric field and the 
disintegration of negative ions by electron calli­
sions. The common feature of these problems is 
the fact that the effects under consideration are 
determined by the behavior of the valence elec­
tron in an atom at large distances from the nu­
cleus. The removal of an electron from an atom 
or an ion placed in a constant electric field occurs 
as a result of the tunnel effect. The difficulty in 
this problem consists of the fact that the barrier 
through which the electron penetrates is a three­
dimensional one. In order to overcome this dif­
ficulty the problem is artificially reduced to a 
one-dimensional problem [t, 2J, but the method of 
introducing the effective potential barrier is not 
justified and the obtained result is incorrect. In 
two cases the problem can be solved exactly. In 
the case of a hydrogen atom in the ground state [3] 

placed in an electric field the variables in the 
Schrodinger equation for the wave function of the 
electron can be separated in parabolic coordinates 
so that the problem is reduced to a one-dimen­
sional problem. The Schrodinger equation can 
also be solved for the wave function of an elec­
tron situated in a spherically symmetrical field 
of force of zero range and in a constant electric 
field [4]. 

585 

Of practical interest is the case when the in­
tensity of the external electric field is much 
smaller than the intensity of the characteristic 
atomic fields. If this condition is satisfied the 
breakup of the atomic particle occurs slowly 
compared to the characteristic atomic times and 
the leaking out of the electron takes place primar­
ily in directions close to the direction of the elec­
tric field. Therefore, in order to determine the 
frequency of the passage of the electron through 
the barrier it is sufficient to solve the Schro­
dinger equation near an axis directed along the 
electric field and passing through the atomic nu­
cleus. This is carried out in the present paper 
by the usual quasiclassical methods on the basis 
of the fact that far from the nucleus the fields 
acting on the electron change by only a small 
amount when the electron is displaced by a dis­
tance of the order of atomic dimensions. As a 
result we obtain an asymptotically exact (in the 
limit of low intensity of the external electric 
field) value for the probability per unit time of 
the electron passing through the barrier. For 
such a determination of the transition probability 
it is sufficient to know the asymptotic form of the 
electron wave function in the atom for large dis­
tances from the nucleus. 

In a similar manner one can solve the problem 
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of the disintegration of a negative ion situated in 
the static field produced by a Coulomb center. 
The result obtained is utilized to find the cross 
section for the breakup of a negative ion by an 
electron collision. This effect which is important 
in the disintegration of a negative ion by a slow 
electron was investigated by 0. B. Firsov. At 
large collision velocities the negative ion disin­
tegrates largely due to the variation in time of 
the field of the incident electron. In the present 
paper the cross sections for the breaking up of 
negative hydrogen ions by electrons due to both 
effects were calculated on the assumption that 
their value considerably exceeds the effective 
size of the negative ion. The result obtained jus­
tifies the assumptions made. 

THE BREAKING UP OF AN ATOMIC PARTICLE 
IN A CONSTANT ELECTRIC FIELD 

For the investigation of this problem we 
utilize the one-electron approximation. The prob­
ability of the transition of an electron into the 
continuous spectrum is determined by the expres-
sion 

W = ~ jds, 
s 

the solution of equation (2) will be the atomic wave 
function: 

[ 2Z + 1 (l- m)! ]''' e±im<ll 
'¥ = '1\J (~;) -- - Pr(cos 8)-----=-.. 

1 2 (l+m)! l'2:rt 
(3) 

Here r, e, and 4> are the spherical polar coordi­
nates of the electron, l is the orbital angular mo­
mentum of the electron, m is its component along 
the x axis. 

Far from the nucleus the radial wave function 
of the electron is a solution of the Schrodinger 
equation with the potential U = -Z/r, where Z is 
the charge of the atomic core, and has the 
asymptotic form: 

(4) 

The constant B which is determined by the behav­
ior of the electron inside the atom we shall take 
as known. 

. For r » 1 the wave function satisfies the 
Schrodinger equation 

(- -~ - -~ - Fx) '¥ = - ~2 'V (5) 

and goes over into (3) and (4) in those regions 
where the electric field can be neglected. Equa­
tion (5) is separable in parabolic coordinates[3•5J: 

j = 1/2i('¥V'¥*- W*V'¥), (1) s = r+x, T] = r-x, '¥ = qJ(s)x(TJ)f1!sTJ, 

where j is the electron current density; we 
utilize the system of atomic units n = mel = e 2 = 1. 
For the surface S it is convenient to choose a 
plane perpendicular to the direction of the electric 
field. For a low intensity of the external electric 
field F the integral (1) converges rapidly near 
the x axis directed along the field and passing 
through the atomic nucleus. Therefore, in order 
to determine the probability of the transition of 
an electron through the barrier it is sufficient to 
obtain the wave function of the electron near this 
axis. 

The wave function of an electron making the 
transition is a solution of the Schrodinger equa­
tion 

[ -1/2~ + U (r) - Fx ]'¥ = e'¥, (2) 

where U ( r) is the potential of the interaction of 
the electron with the atomic core with the poten­
tial taken to be spherically symmetric; r is the 
distance from the electron to the nucleus. 

We assume that the electric field is small, so 
that there exists a range of distances from the 
nucleus along the x axis where the binding energy 
of the electron is -E = y 2/2 » I U ( x) l, y 2/2 » Fx. 
In the domain of these and smaller distances one 
can neglect the term Fx in equation (2), so that 

( V2 ~~ . 1 F \ 
qJ" + - 4 + -£- + 4£2 + 4 s) (p = 0, 

" ( V2 ~2 1 F \ X+ --+-+---TJ)x=O. 
4 11 4Tj2 4 ' 

(6) 

The separation constants {3 1 and {32 are related by 
the equation {3 1 + {3 2 = Z and in solving the Schro­
dinger equation near the x axis ( 7J « ~ ) and 
x » 1 they are determined by comparing (6) with the 
asymptotic form (3) and (4) of the wave function 
of the electron in the atom near the x axis: 

( S )Z/Y-1-m/2 
'¥= B-

2 

[ (2l _L 1) (l- m)l ]';, e±im<D X e-Y~/2 1 • f]m/ze-Y~/2 __ 
2(l+m)! V2:rt · 

Substituting (7) into (6) we obtain 

~ 1 = Z - 1/2v(m + 1), ~z = 1/zv(m + 1). 

(7) 

(8) 

Utilizing the fact that the integral (1) is damped 
out rapidly near the x axis and selecting for the 
surface Sa plane perpendicular to the x axis we 
obtain ds = pdpd4> = % ~d7)d4>, since 
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where p is the distance from the x axis. The 
electron current is given by 

.· = ''I' _r __ 'I'* __ r _ -~- _!____ ___!__ _ • cp i [ anr• anr ] . 2 d • d 
1 2 1 dx dx - 2:rt GT] [ cp dG cp df J ' 
and since near the x axis the function 
x = 1Jm / 2 e-'Y1J / 2, the probability of transition per 
unit time is given by 

W = i (cp dcp" _ cp* dcp ) m! 
~ d~ d~ vm+1" 

The quasiclassical solution of Eq. (6) for 
cp( ~ ) to the left and to the right of the turning 
point ~ 0 has the form [3] 

I( i ~ exp [ i S pdG - i ~ J , G > so 
-yp "' 4 

<p = l ~ 

I --S-exp[-) pds], ~<so 
l -yp 6o 

(9) 

p = 1 v~ - ~~ - ~ s 1'/,. (10) 

From (9) we obtain for the probability of decay 
per unit time 

w = m!C2 I v"'H. 

From (10) we have that in the region Z/"}'2 

« ~ « y 2/F the wave function cp has the form 

cp = c 1/ ~(_!__sV'N ev'/3F-v'6/z. 
V v 4v2 J 

Requiring that in this region the wave function 
should coincide with the expression (7) we shall 
obtain the value of the coefficient C. In this case 
the probability of detaching an electron per unit 
time turns out to be equal to 

B2(2Z+1) m!(Z+m)!( 2y.z )2z1v-m-1 
W = -- e-2v'/3F (11) 

2vm (l - m) ! \ F · 

In the case of a hydrogen atom in the ground state 
( Z = y = 1 , m = l = 0, B = 2), we obtain 

W = 4F-le-'icF, 

which coincides with the well known result [3]. 

A special case in the discussion of the proba­
bility of disintegration in an electric field is pre­
sented by a hydrogenlike atom. The stationary 
states of a hydrogenlike atom in a constant elec­
tric field are described by the parabolic quantum 
numbers n 1, n2, and m, while the Schrodinger 
equation (2) is everywhere separable. The separa­
tion constants in (6) are: 

z 
'\' =--; 

n 

r m + 1 \ 
~2 = V nz+--2-); 

where the principal quantum number is n = n 1 

+ n2 + m + 1, m > 0. The probability of decay of 
a hydrogenlike atom per unit time obtained by the 
method described above is equal to 

(12) 

The criterion for the applicability of relations 
(11), (12) obtained above is the requirement that 
there should exist a region L 1), in which the 
atomic wave function already coincides with its 
asymptotic expression, while the electric field is 
as yet unimportant. This yields 

(13) 

Formula (11) can be utilized to obtain the 
binding energy of an electron in a negative ion in 
terms of the experimentally measured depend­
ence of the mean lifetime for the decay of an ion 
on the intensity of the electric field [4]. Averaging 
(11) over the component of the angular momentum 
of a weakly bound electron we obtain for the prob­
ability of decay 

(14) 

where this quantity is entirely determined by the 
decay of the state the component of whose angular 
momentum on the direction of the electric field is 
m = 0. In the papers of Riviere and Sweetman [s] 

the frequency of decay of a negative helium ion 
was measured as a function of the intensity of the 
electric field. A comparison of the results of 
these papers with formula (14) shown in Fig. 1 
enables us to determine the binding energy of the 
electron in a negative helium ion which turns out 
to be equal to 0.06 ± 0.005 eV. The value of the 
coefficient B utilized in (14) was obtained from 
the slope of the experimental curve and is equal 
to ~ 0 .18. The value of the electron affinity en­
ergy in a helium atom obtained by Holfien and 
Midtal [7] on the basis of a variational calculation 
is equal to 0.075 eV. 

THE BREAKING UP OF A NEGATIVE ION BY 
ELECTRON COLLISIONS 

1. The process of the breaking up of negative 
hydrogen ions colliding with electrons is of inter­
est in astrophysics. In the case of large cross 
sections for the breaking up of an ion this process 
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FIG. 1. Dependence of the probability of the breaking-up of 
He- in an electric field on the intensity of the field: points­
experimental values[6], dotted curves-calculations by means of 
formula (14). 

can alter the thermodynamic equilibrium of nega­
tive hydrogen ions in stellar atmospheres [a,s]. 
For the evaluation of the cross section for the 
breaking up of H- by electron collisions Gelt­
man [1o] and Rudge [ll] in their papers used the 
Born approximation together with the introduction 
of some additional assumptions which enable one 
to cut off the cross section near the threshold. 
However, these assumptions are not well justified 
so that the cross sections obtained in these papers 
do not correspond to the actual cross sections. A 
sensible approximation to be used for obtaining 
the cross section for the breaking up of H- by 
electron impact was proposed by McDowell and 
Williamson [12J. But also in this case assumptions 
are made the accuracy of which cannot be esti­
mated. The method presented in this paper for 
the calculation of the cross section for the break­
ing up of a negative ion in a collision with an elec­
tron is based on the assumption that the breaking 
up cross section exceeds the effective dimensions 
of the negative ion. Moreover, it is assumed that 
the principal contribution to the cross section is 
made by collisions with impact parameters p for 
which the classical description of the incident 
electron is valid 

(15) 

The validity of this condition can be checked after 
obtaining the final result. 

2. The breaking up of a negative ion in a calli­
sion with an electron can take place in two ways. 
One of them is related to the "squeezing out" of 
a weakly bound electron from the negative ion by 
the Coulomb field of the free electron, while the 
other leads to the breaking up of the negative ion 
as a result of the variation in time of the field of 
the incident electron. Let us start by considering 

the first method of the breaking up of a negative 
ion. 

If a negative Coulomb charge is placed not far 
from a negative ion in such a way that the poten­
tial of interaction of the charge with the negative 
ion would be greater than the binding energy of 
the electron, then it becomes possible for the 
electron to leak through the barrier, and this 
leads to the decay of the negative ion. The proba­
bility of decay of a negative ion per unit time as a 
result of the action of the Coulomb field due to the 
stationary center can be determined by the same 
method as in the case of the presence of a homo­
geneous electric field. The probability of breaking 
up per unit time is given by relation (11), so that 
in order to obtain it it is necessary to find the 
wave function of a weakly bound electron in the 
negative ion. The wave function of such an elec­
tron satisfies the Schrodinger equation 

( --~ + V(r)+ IR~rl )'I'=(-~+~ ).w, (16) 

where V ( r) is the effective potential for the in­
teraction between the electron and the atom, R is 
the distance from the atomic nucleus to the 
Coulomb center of a unit negative charge (free 
electron), y2/2 is the binding energy of the elec­
tron in the negative ion, r is the electron coordi­
nate, and the atomic nucleus is chosen as the 
origin of the system of coordinates. 

We shall assume that the intensity of the field 
due to the Coulomb center is not great in the re­
gion where the weakly bound electron is situated, 
so that the wave function of the electron in the 
region where the atomic field is effective is the 
same as in the absence of the Coulomb center. In 
this case one can neglect the corrections to the 
electron energy due to the action of the homogen­
eous field of the Coulomb center, i.e., 

a I 2R~ ~ y2 I 2, ,1 I R. (17) 

Here a is the polarizability of the negative ion, 
where in the case of an s-electron [4] a = A2/ 4y4, 

and where the coefficient A is defined in expres­
sion (19). 

Condition (17) defines the criterion for the ap­
plicability of the method utilized. If this condition 
is satisfied beyond the range of action of the 
atomic field, then the variables in equation (16) 
are separable in elliptic coordinates [3•13]: 

s=(r1 +r2)/R, 1J=(r!-rz)/R, 'I'=X(s)Y(1J); 

d [ dX ] [ Rzvz Rsz J as (s2-1)a6 + -Rs- 4 -s2+'-2-+D x=o, 

_!:_ [ ( 1 - 112) dY] + [ - R1J + R2v2 112 - R1Jz - D J y = 0. 
d1] d1] 4 2 

(18) 
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Here r 1, 2 are the distances from the electron to 
the atomic nucleus and to the Coulomb center, D 
is the separation constant. 

3. We shall make use of the fact that when (17) 
is satisfied the electron goes through the barrier 
primarily in the directions 1J = -1, and we shall 
solve the Schrodinger equation near this axis. Let 
us consider the process of detachment of an s­
electron from the negative ion. The asymptotic 
form of the wave function for an s-electron in a 
negative ion can be written in the form (4) 

V V e-vr 
W=A ~-. 

2n r 
(19) 

We shall obtain the constant D in (18) from the 
requirement that for r 1 « R, ra » 1 the wave 
function (18) near the 1J = -1 axis should go over 
into (19). This yields 

D = R2y2 I 4 + R I 2 - Rv. 

Further, utilizing the same method for solving 
equations (18) which was used in investigating the 
breakup of an atomic particle in a constant elec­
tric field, we shall obtain in the case under con­
sideration for the probability of breakup of the 
ion per unit time 

W = 2:;;2 exp{- 2vRf ( ~v2 )}, 
f(x) =arc sin x'l,l(x (1- x) ]'/'- 1. 

In the limit Ry2/2 « 1 this yields 

B2F 
W = -- e-2:'1'/3F 

2y ' 

(20) 

(21) 

and this coincides with formula (14) (A = B-1/Zy). 
Here F = 1/R2 is the intensity of the field of the 
Coulomb center at the center of the negative ion. 

4. The probability P ( p, t) that in colliding 
with an electron of impact parameter p a nega­
tive ion has disintegrated by the time t satisfies 
the equation 

dP~, t) = W[1-P(p, t)]. 

From this the probability of squeezing out an 
electron from a negative ion in the case of an im­
pact parameter p is given by the formula 

P(p)= 1-exp[-I W(R)dt]. 

The trajectory for the motion of an incident 
classical electron is determined by the Coulomb 
potential of its interaction with the negative ion, 
so that the expression for the relative motion of 
the electron and the negative ion R ( t) given in 
parametric form is described by the relations [t4] 

R = a ( e ch £ + 1) , t= b(esh£+£), a= v-2, 

where v is the relative velocity in the collision. 
Using this law of motion we shall obtain the fol­
lowing expression for the cross section for the 
decay of a negative ion colliding with an electron 
as a result of the squeezing·out of a weekly bound 
electron: 

00 

a= 2Jt ~ p{1- e-w]dp, 

A 2v +oo d£ 
w=-\_. ~ 

2y ~""(ech£+1) 

X exp{-2v(e c~z£ + 1) f [ 2:: (ech £ + 1) ]} (23) 

The form of f(x) is defined by formula (20). 
The coefficient A can be obtained by means of 
joining the asymptotic expression for the wave 
function (19) to the wave function for the negative 
ion constructed on the basis of the variational 
method. For a negative hydrogen ion this yields 
A2 = 2.65 [15,16]. 

5. In evaluating the cross section for the decay 
of a negative ion as a result of the motion of the 
electron we shall as before assume that the inci­
dent electron moves along a classical orbit and 
the decay takes place primarily at distances be­
tween the electron and the negative ion consider­
ably in excess of the dimensions of the negative 
ion: 

R~1/v. (24) 

If, moreover, we can neglect the curvature of the 
trajectory of the incident electron, i.e., describe 
the incident electron by a plane wave and assume 
that the principal contribution to the cross section 
is made by the range of impact parameters for 
which perturbation theory is applicable, then we 
shall obtain the Born approximation which corre­
sponds to the cross section for the decay of an 
atomic particle ( [3J, p. 664) 

8n ( Pmax) a= --z(z2)ooln --. . 
V Pmm 

(25) 

Here Pmax is the characteristic impact parameter 
for which scattering occurs into such small angles 
that the quantum nature of the scattering must be 
taken into account; Pmin is the characteristic im­
pact parameter for which perturbation theory no 
longer holds. 

*sh = sinh, ch = cosh. 
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Let us evaluate more accurately the expression 
in the argument of the logarithm in formula (25) in 
the case of the breaking up of a negative ion by 
electron impact, and let us establish the collision 
velocities for which the curvature of the trajectory 
of the incident electron is significant, so that for­
mula (25) no longer holds. Utilizing relation (24) 
we expand the operator for the interaction 
V = I R - r I -t between a weakly bound electron 
in a negative ion and the incident Coulomb charge 
in a power series and restrict ourselves to the 
first few terms of the expansion: 

1 1 Rr 
V= IR-rj ~ R-+Ra. (26) 

If we use perturbation theory to obtain the 
probability amplitude for the transition and if we 
assume that the expression for the relative mo­
tion of the negative ion and the incident Coulomb 
center corresponds to free motion ( R2 = p2 

+ v2t2 ), we shall obtain for the probability for the 
electron to make a transition to the state k in 
the case of a collision with impact parameter p 
the expression 

Pn(P)= 4oo2zoh.2 [Ko2( oop) +Kt2( oop )], (27) 
v4 , v v ' 

where w is the excitation energy of the electron, 
Kp are Macdonald functions; the matrix element 
is evaluated between the initial ( 0) and the final 
( k) states of a weakly bound electron. The first 
term in formula (27) corresponds to a transition 
into the state in which the component of the angu­
lar momentum of the electron along the direction 
of motion is m = 0, and the second term to a 
transition into the state with the component 
m = ±1. 

The contribution to the cross section for the 
transition of the electron to the state k made by 
the range of impact parameters p > Po for which 
perturbation theory is valid is equal to 

~"" oopo ( oopu ) ( oopo \ crn> = 2n pPn (p) dp = 8nzon2 --K0 -- K 1 -- I . 
v3 v v I 

Po 

Let us make use of the expression for the 
matrix element z0k: 

k 
X=----, 

'Y 

(28) 

(29) 

which holds for transitions to states with not very 
large values of electron momenta which give the 
principal contribution to the cross section for the 
transition. It is obtained if for the wave function 
of the bound electron one utilizes the function (19), 
while for the electron in the continuous spectrum 

one utilizes a plane wave. On the basis of formu­
las (28) and (29) we shall obtain for that part of 
the breakup cross section which is determined by 
the range of impact parameters p > Po for which 
perturbation theory is valid the formula 

cr> = 8n(z2)oo Ft( _.roopo ) ; 
v2 v 

f'32 x4dx n 

Fi(a) =a~ 1t (1 + x2) 3 K 0 [a(1 + x2)]Kt[a(1 + x·)], 

0.46 0 F 1(a)-+ln-- as a-+ . (30) 
a 

In determining the probability of transition for 
p < Po one can assume that it is determined by 
formula (27) if the total probability of the decay of 
the ion calculated by means of this formula is less 
than unity, and that the total probability of the 
decay of the ion is equal to unity in the opposite 
case .. Utilizing this we obtain that the cross sec­
tion for the breaking up in the case WPpert/v « 1 
( Ppert is the impact parameter of the collision 
for which Eki'k (p) = 1) is equal to 

cr = 8n(:2)ooln( 0.63v ), 
V Wop pert ' 

where, as follows from (27) and (29), for 
WPpertlv « 1 we have 

_ ~ ,.._, 2(z2)oo''' 
Ppert- - = . 

vvl'6 v 

A more accurate evaluation than the one given 
above of the probability of decay for p < Po yields 
for the cross section for the breakup of a negative 
ion 

= 8n(z2)oo1 ( 1.55Z:.) 
cr v2 n \ Ay . (31) 

Relation (31) determines the cross section for the 
breaking-up of a negative ion by electron impact. 
It agrees with the general formula for the cross 
section for inelastic scattering in the Born ap­
proximation (25) in which the expression in the 
argument of the logarithm has been evaluated. 

6. Formula (31) is valid in the case when one 
can neglect the curvature of the trajectory, so 
that 

a/pmax = oo/v2 ~1. (32) 

Here Pmax ~ v/w is the characteristic impact 
parameter such that for greater values of p the 
probability amplitude for the transition is Ck 
~ exp ( -p/Pmax ), a= v-2 is the radius of curva­
ture. The curvature of the trajectory leads to the 
fact that in such collisions distances at which 
transitions effectively take place are not attained, 
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and this leads to a lowering of the value of the 
cross section for the breaking up of a negative 
ion. 

Assuming that Eq. (32) is satisfied we deter­
mine the correction due to the curvature and 
establish the collision velocities at which one can 
neglect the curvature. Utilizing the law of motion 
in the Coulomb field (22) and perturbation theory 
for the transition amplitude we obtain for the 
transition probability in place of (27) the formula 

(I) 

-3 ~1. 
v 

Since the principal contribution to the cross 
section (31) is made by transitions with 
w = ( 2 - 4 )w0, the curvature of the trajectories 
significantly lowers the cross section for the 
breakup of a negative ion even in the range of 
velocities of the order of atomic velocities. 

We determine the total cross section for the 
breaking-up of a negative ion by electron impact. 
Formula (23) for the cross section for "squeezing 
out" a weakly bound electron by the static field of 
an incident electron is valid if the characteristic 
frequency of the variation of the field of the inci­
dent electron vp/Riuin is much smaller than the 
characteristic atomic frequency w0 = y2/2. Here 
Rmin = ( 1 + E )/v2 is the minimum distance of 
approach of the incident electron and the negative 
ion at impact parameters p ~ ...[(i which make the 
principal contribution to the cross section. This 
yields for av4 :S 1: 

a sq < 'f / V5• 

Thus, at low collision velocities the breaking 
up of a negative ion in a collision with an electron 
occurs as a result of the "squeezing out" of the 
electron by the static field of the incident electron, 
while the Born cross section in this range of 
velocities is small due to the curvature of the 
trajectory. At high velocities when the curvature 
of the trajectory becomes unimportant, the 
"squeezing out" of the electron no longer occurs 
due to the rapid variation of the field of the inci­
dent electron. Joining together the cross section 
for "squeezing out" and the Born cross section 
in the intermediate range of velocities we shall 
obtain the total cross section for the breaking up 
of a negative ion by electron impact. As a result 
we determine correctly the cross section for 
breaking up at large and at not very small ener­
gies while in the intermediate energy range where 
the cross section has its maximum we cannot 
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FIG. 2. Cross section for the breaking-up of H- by an 
electron: 1 - total cross section, 2 - Born cross section (31), 
3 - Born cross section taking the curvature of the trajectory 
into account, 4 - squeezing-out cross section (23), 5 - the re­
sult of McDowell and Williamson[12], 6 - the same using 
Geltman's corrections, 7 - Geltman's result[10] reduced by a 
factor 10. 

guarantee the accuracy of the result. The results 
of the calculation of the cross section for the 
breaking up of a negative hydrogen ion are shown 
in Fig. 2 and compared to the results of other 
calculations. 

Of practical interest is the quantity ( av) 
where the averaging is made with the aid of the 
electron distribution function. If the electron dis­
tribution is assumed to be Maxwellian then this 
characteristic turns out to be equal to 1.3 
x 10-8 cm3/sec at a temperature of 6000°. On the 
basis of this one can conclude that if in solar and 
stellar atmospheres Maxwellian velocity distribu­
tion holds for electrons then the thermodynamic 
equilibrium of H- is not violated in those regions. 

In conclusion the authors express their deep 
gratitude to 0. B. Firsov for valuable advice and 
for his interest in this work. 
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