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On the basis of the theory of finite Fermi systems the quantity 6.(R2), the difference in the 
mean square radii of the electric charge distributions in the ground and excited states of a 
nucleus, is calculated. The constant for the volume isotope shift is calculated for the same 
region of atomic weights. The nature of the excited nuclear states is discussed. 

t}.<R2) = <Re2>- <Rl>; BY the isomer shift we mean a dependence of the 
energy of the electronic states of the atom on the 
state of the nucleus (ground or excited state). This 
dependence is connected with the different spatial 
distributions of the nuclear charge in the ground 
and excited states. The study of the isomer shift 
enables one to investigate delicate effects in the 
distribution of the electric charge of the nucleus 
and gives information about the structure of the 
nucleus which is difficult or impossible to obtain 
by other methods. 

'/ 1 (Re2) = ~ pe(r)r2dV ~ Pe(r)dV=:z-~ Pe(r)r2dV, 

The theoretical treatment of the isomer (isotope) 
shift has mainly concentrated on the electronic part 
of the problem, which by now has been well inves
tigated (cf., for example, [1]). For the description 
of the nuclear part of the problem, extremely crude 
models have been invoked in the past. In the pres
ent paper the study of the nuclear aspects of the 
problem is carried out in the framework of the 
theory of finite Fermi systems. [2] 

Experimentally the isomer shift was first detec
ted by optical methods. [3] Later it was observed 
and investigated extensively in experiments on the 
Mossbauer effect (cf. [ 4]). 

In the optical case the isomer shift manifests 
itself as a shift of the lines of the optical spectra of 
isomers. Since only s and p112 electrons are sensi
tive to the charge distribution in the nucleus (since 
their ljJ functions are different from zero over the 
region of the nucleus), the shift can be observed 
only on lines corresponding to transitions of s and 
p1; 2 electrons. The effect is very much smaller for 
the p electrons, so we shall treat the isomer shift 
only for s electrons. 

The difference in the volume distribution of 
charge for the isomeric and ground states of the 
nucleus is characterized by 6.(R2), the difference 
in the mean square radii of the charge distributions 
in these states. We have 
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<R02 ) = ~~ pg(r)r2dV, (1) 

where Pe(r) and Pg(r) are the electric charge dis
tributions in the excited and ground states, respec
tively, and Z is the nuclear charge. 

The isomer shift in optical spectra is charac
terized by the quantity C, which is related to 
6.(R2) as follows: 

C = Roo ( 1 +a )2 ( 2ZR )2cr t}.<R2) ' 
3 r ( 1 + 2cr) \ aH R2 

(2) 

where Roo is the Rydberg constant, a H is the radius 
of the first Bohr orbit of hydrogen, 
a= [1- (Z/137) 2]112, and R is the nuclear radius. 

In experiments on the Mossbauer effect (reson
ance absorption of y quanta) the isomer shift ap
pears if the source and absorber are the same 
isotope but bound in different chemical compounds. 
In this case the energy of the emitted y rays is 
different from the resonance energy for absorption 
of they rays. The difference in energy is related 
to the different electron densities at the nucleus in 
the source and absorber. The energy of the emitted 
y quantum is E1 = Eo- 6.T1, the energy of the ab-
sorbed y quantum is E2 = Eo- 6.T2, where Eo is the 
energy of the nuclear transition, 6. T 1 is the change 
in the energy of the electron shell because of the 
difference in the charge distributions of the excited 
and ground states of the source nucleus, and 6.T2 
is the same quantity for the absorber. The energy 
difference 6.E = 6.T1 - 6.T2 is expressed in terms 
of the ljJ functions of the s electrons of the source, 
1/Js, the absorber, 1/Ja, and 6.(R2)jR2, by the formula 

1 [ J t}.(R2) t}.E = 3 nZe2R 2S (Z) ~ ¢a2 (0)- ~ ¢s2 (0) --w, (3) 
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where S(Z) is a relativistic factor which is close to 
unity for light nuclei ( cf. [ 4J). 

In both the formulas (2) and (3), the dependences 
on the nuclear and electronic features of the prob
lem are separated. To find the nuclear factor we 
must calculate .6.(R2). It should be mentioned that 
we can experimentally get a very accurate value 
for the product of the two factors, but their individ
ual determination is difficult. The quite good agree
ment of the theoretical values of .6.(R2) with ex
perimental data for the isotope shift ( cf. also [ 5]) 

leads one to hope that a comparison of theoretical 
values of .6.( R2 )/R2 with experimental results for 
the isomer shift will make it possible, in those 
cases where the nature of the isomeric states is 
well understood, to get information about the elec
tronic characteristics of the problem, and in those 
cases where the electronic characteristics are 
well known to improve our knowledge of the iso
meric states. 

CALCULATION OF A(R2) 

Let us consider isomers for which the transition 
to the ground state is a single-particle transition. 
Such isomeric states can be pictured as the result 
of adding to the even-even core a nucleon (hole) in 
a single-particle level with the appropriate spin 
and excitation energy. The ground state is similarly 
described as an even-even core plus a particle 
(hole). The problem of calculating .6.(R2) then re
duces to computing the difference in the changes 
in the mean square radii of the charge distributions 
resulting from adding the nucleon in different 
single-particle states. 

Usually this quantity is calculated for both pro
ton and neutron transitions using the shell model. 
In order to obtain the redistribution of the charge 
in neutron transitions, i.e., to take account of the 
interaction of the odd neutron with the core, a posi
tive effective charge is ascribed to the neutron. In 
the isotope shift problem this approach gives the 
correct order of magnitude of the effect. As we 
shall see, for the isomer shift this approximation 
usually gives the wrong sign for the effect. 

In the present paper the interaction of the odd 
nucleon (hole) with the core is included by using the 
theory of finite Fermi systems. L2J 

The change oA of some quantity A characteriz
ing the nucleus, as the result of adding a proton, 
can be expressed in terms of the corresponding 
vertex cifP(A) according to the formula 

M = ~acif,_,_P(A) {ih-n;.); (4) 
1. 

here A labels the single-particle states (n, l, j, m), 

nA are the occupation numbers for single-particle 
states in the initial nucleus, nA are the occupation 
numbers in the nucleus obtained by adding a proton 
and neglecting the interaction of the added proton 
with the nucleons in the core, cif~A (A) is the diag
onal matrix element of the vertex between single
particle functions. When a neutron is added, oA is 
expressed similarly in terms of the vertex eifn(A). 

In the A representation, the vertex 

$"(A)= ( ffP(A) ) 
ffn (A) 

satisfies the equation 

ff (A)'-'-' = $""'(A);.;., 

+ ~ <A,A,' I a2r"'l AiA2) [ L._,,.,cif (A) A.,?., 

A.,l., 

where 

( LP 0 ) 
L = 0 Ln ' 

(for scalar vertices, affW(A) =A), 
E,.PE;.,P- e?.Pe,_,P + ll;.P!l;.,P 

L._,.,P = -------:c=---c---=-c--
2E;.PE;.,P (E;.P + E,_,P) 

(5) 

EP = 
A 

[(E\)2 + (.6.\)2]1/2, E\ are the proton single 

particle energy levels, measured from the chem-
ical potential Jl.P, .6.~ = a.6.~A' .6.~A is the diagonal 

matrix element of the amplitude of transition of a 
proton particle (hole) to a hole (particle) and con
densation of a pair, a is the renormalization con
stant. L~A' is expressed similarly in terms of the 

characteristics of the neutron system having label 
n. 

The matrix elements of r w appearing in (5) 
have the form 

<AiA2jr;n"'i""')= ~ (cp;.,i(ri) )*cp.,,h(r2)r;n"'(ri, r2, r3, r4) 

X ( cp,_h (r3) )*cp1,i (r4) dV1 dV2 dV3 dV4; 

c:p~(r) are single particle wave functions of _nucleons 

(i, k run through the two values n and p). $" A.A 
represents an average over levels close to the 
Fermi surface of the diagonal matrix element of 
the vertex (and is independent of A). For spherical 
nuclei, to which we shall restrict our treatment, 
the angular dependence of the total vertex coincides 
with the angular dependence of ffw, so the transi
tions entering in the sum in (5) are determined by 
the selection rules for the part cifW • 

To find .6.(R2), we must solve(:?) for cif(A) when 
A= r 2. In this case 
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In the equation for if(r2) the diagonal terms are 
small, and also vary in sign, so they can be 
dropped. The smallness of the diagonal terms is 
related to the fact that F(r2)t..A. is weakly dependent 
on .\, and so I ffn - ift...\ I « if.\.\ . Substituting,_ 
A = r 2 in (5), dropping the diagonal terms in the 
sum and summing over m, we get 

az 
F '"'"' = if'"'"'+~ 4n ("A'A' I rw I A!A2) (2h + i)L~.,~.,if 1.,1.,. (6) 

1.,1., 

Here the index.\ denotes the set of quantum num
bers n, l, j, and the matrix elements appearing in 
(6) are taken between the radial wave functions. 
The transitions in the sum are determined by the 
selection rules ~~ = 0, ~j = 0. 

In getting (6) it was assumed that 

where n is the density of nucleons and E is the 
Fermi energy. 

Equation (6) was solved on a digital computer. 
The Nilsson scheme[ 6J was used for the single
particle levels for both neutrons and protons. 
Transitions between shells were considered (within 
one shell the selection rules forbid transitions). 
For the fik we used the interpolation formula[ 5J 

Jik = __!_ {fin ih n (r)- fexik [n (r)- no]}, ( 8) 
no 

where n(r) = n0/[ 1 + ea (r - Ro)], n 0 is the mean den
sity of nucleons in the nucleus, a = 1.55 r-1, 

R 0 = 1.2 A113 f. It was assumed that fnn = fPP. 
In the sum in (6) the pairing correlation is im

portant for transitions involving levels close to the 
Fermi surface. Since there are few such terms in 
the sum, the inaccuracy in the corresponding L t..1t..2 
has little effect on the solution. Considering this 
point, we assumed that ~f = ~ P and ~~ = ~ n 

are independent of the indices and are the same 
constant values for all transitions in a given nu
cleus. The values of 11P and J-1-n were found from 
the approximate solution of the equations 

In choosing numerical values for ~n and ~p we 
used data from the paper of Nemirovskil and 

(9) 

Adamchuk. [T] The values of fPP and fnn were 
taken from [S], where they were obtained from an 
analysis of the quadrupole moments: 

/;nPP = 1.3, fexpp =- 2.9, /;nnp = 0.6, fexnp =- 2.3. 

To check the correctness of our choice of con
stants, we calculated the constant for the volume 
isotope shift in the same region of masses for 
which the isomer shift was treated. The quantity 
~(R2 ) in (2) for the isotope shift is given by the 
expression 

!:J.(R2) = ~aif~.~.n(r2) (ih- n1.), (10) 
).. 

where n,\ and n,\ are the occupation numbers in iso
topes with N + 2 and N neutrons, respectively. 

The problem of finding n.\ when pairing is taken 
into account was not solved. The assumption was 
made that the occupation numbers for neutrons are 
changed for only one level .\0• Then (10) becomes 

(11) 

For many of the isotopes considered, as neu
trons are added there is competition between differ
ent j levels, so that the choice of the state in which 
the pair of neutrons is added can be made only by 
comparing the values of the isotope shift constant 
with experimental values. With the stated values 
of the constants f ik the calculations are in satis
factory agreement with experiment, and the order 
of filling of the j levels does not contradict the 
usually accepted schemes. The computations of the 
constant for the volume isotope shift are given in 
Table I. 

In the computation of ~(R2 ) for isomeric states, 
either the proton or neutron vertex appears in (10) 
depending on whether the odd particle is a proton 
or neutron. Then 'ilt.. denotes the occupation number 
for nucleons in the isomeric state. For strictly 
single-particle (hole) isomeric states, we find from 
(10) 

!1 (R2 ) = +a (if 1.,1., - if 1.,1.,), (12) 

where .\1 is the set of quantum numbers for the ex
cited state and .\0 the set for the ground state. The 
upper sign applies for particle states and the lower 
sign for hole states. The assumption that the state 
is a single-particle state is well satisfied for the 
longlived isomers, in which the isomer shift can 
be detected optically. The corresponding isomeric 
transitions are characterized by a large difference 
of the angular momenta for a small energy differ
ence. The E2 transitions typical for collective 
states are absent. In the neighboring even-even 
nuclei no collective excitations near this energy 
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Table I. Constants for the Volume Isotope Effect 

Element I A,- A, 

a7Rb 85-87 1 g.,., 23 12 8±12 

asSr 84-86 1 g.f, 23 12 }-o 86-88 1 g.!. 23 12 

uRu 96-98 1 g,f, 40 22 34±9 
98-100 1 g, 40 22 

100-102 
.. averaged ove 

1 g,f, 40 22 all isotopes 
102-104 2d,(, 68 35 

4GPd 106-108 2d,f, 78 38 42±9 
108-110 2d,f, 78 38 36±9 

47Ag 107-109 2 d,f, 76 38 38±6 

4sCd 106-108 2d,f, 100 44 35 
108-110 2 d,f, 98 43 32 
110-112 2d,/, 96 42 32±4 
112-114 2d,f, 94 41 30 
114-116 2hu1, 52 27 22 

soSn - 1 g,f, 62 34 
112-114 2 d,/, 100 48 40±10 
114-116 2 d,f, 100 48 40±10 
116-118 2d'!. 100 48 30±10 
118-120 3 s,, 100 44 30±10 

" 120-122 1 hu/, 58 30 15±10 
122-124 1 hu1, 58 30 15±10 

5oBa 134-136 1 hu/, 82 44 44±9 
136-138 1h"l' 82 44 67±13 

s4Xe 132-134 1 hu1, 70 38 18±4 
134-136 1 h,, 70 38 26±6 .. 

Footnote. CT is the theoretical value of the isotope shift constant, cl is the 
value of CT obtained from the first iteration of Eq. (2); the experimental data 
are taken from[']. The results for the lg7 I state of Sn50 are given to illustrate 
the possibility of improving the fit of the tbeoretical values of CT to experi
ment by including the pair correlation. 

are observed. The results of calculations for such 
isomers are given in Table II. 

For isomers studied by the MBssbauer effect it 
is difficult to give a unique assignment. of the 
states. But from the calculations of ~(R2 ) one 
can get information about the nature of the states 
if one has reliable experimental values of ~(R2 ). 
For these nuclei ~(R2 ) should be obtained by using 
formula (10), i.e., taking account of the redistribu
tion of the nucleons over all levels near the Fermi 
surface. 

Finding nA. and nA. requires the solution of the 
system of equations for ~A. (cf. [2]). The approxi
mation ~A. = ~. it seems, will be unsatisfactory 
here. For example in this approximation ~ for the 
excited state is greater than for the ground 
state. [to] Therefore, in calculating ~( R2 ) the 
assumption was made that in the excited state of 
the nucleus the only occupation numbers that are 
changed are those for the states A. 0 and A. 1• Then 

from the conditi0n of conservation of nucleons we 
get 

m m 

where ~ characterizes the number of "redistribu
ted" nucleons. Expression (10) changes to 

(14) 

where ~ == 1 corresponds to a particle transition 
and~ == -1 to a hole transition. 

The results of computations for these isotopes 
when I~ I == 1 are shown in Table III. 

We note that in general the number of redistri
buted nucleons is different from unity, so that the 
values of ~(R2 ) given in Table III correspond only 
to the limiting case of strict single-particle tran
sitions. Although in finding~ the dependence of 
~A. on A. is important, still in evaluating ~ for the 
transitions considered here one can assume that 
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Table II. Isomer Shift Constant 

Isotope I "· I _, jc 10-• 
C, 10-3 em 8·:~-l 

aoZn69 2P,;, 1g,!, 435 I 13.8 h -3 4 
asKr•• -1g9(2 -2P,;, 305 4.4 h -4 6 
ssSrS7 -1g,;, -2p,;, 390 2.8 h -4 8 
aoY 87 2P,;, 1g9/2 384 14 h +2 23 
aoyso 2p,;, 1g,;, 913 14 sec +2 23 
ao Y 91 2P,;, 1g"/, 555 51 min +2 23 
•ozns• -1g,;, -'2p,;, 588 4.4 min -4 8 
•sCd113 3st,r2 1hu;, 5.1 y -10 19 
.,rnus -1g"/, -'2p,;, 390 1. 73 h -7 +48 
.,run• -1g./, -'2p,;, 335 4.5 h -7 +48 
52 Te127 -2d,;, -1hn;2 88,5 113 d 3 -20 
52Tei29 -2d, -1hu, 106 34 d 3 -20 

i2 ,, 
63 3 -20 52Tei33 -'2d,;, -1hu• 3JO min .. 

.. xersa -2da;, -1hu;, 232 2.3 d 4 -24 

54Xe'"• -'2d,;, -1hu;, 520 15.3 min 4 -24 
56Ba ra• -2da;, -1hu 1 269 28.7 h 5 -28 ,, 
5GJ3ai37 -'2da;, -1hu;2 661 2.6 min 5 -28 

Footnote. A0 is the ground state, A, is the isomeric state, (-A denotes a hole state), 
~E is the transition energy, r the lifetime of the isomeric state. The last column gives the 
single-particle estimate of C based on the radial moments from[9]. The effective charge of 
the neutrons was set equal to Ze/ A. 

Table III. 

i 
Q* I tlE. '· w-•[w( "<R") I'<>'( •w>) sot ope )., t., \QT, b Q;. ·b Qexp exp 

I 
keV sec R~ T R 2 s.p. 

28N iGl 2Pa;, 1/" -0.14 -0.131 68 5,2 -15 2;) 
soZn67 -if,;, -2p,. 0.10 0.11 0.16 93 9500 -16 25 
5osnn• 3s,1, 'ld,;, ,, 0 -0.10 0 -0.08 24 18 -2.5 4 
52Te'" -3s, -2d, 0 0 16 0 0.20 35 1.4 2.8 -4 

/2 12 ' 

53!129 1g,/. 'ld,;. I-0.3J-0.35-0.50
1

-0.69[ 13) 27 10 15 -40 
54Xe139 3s,1, 2d,1, 0 -0.13 0 ±0 .48[ 11] 40 0.7 -2 3 
.,.Xe13112d,1, 3s,1, -0.13 0 -0.12 80 0.3 2 -3 

Here Q and Q* are the quadrupole moments of the ground and excited states, -A denotes 
a hole state. The last column gives single-particle estimates based on the radial moments 
from[9], with the effective charge of the neutrons set equal to Ze/ A. Unless otherwise 
stated, the experimental data are from["]. The subscripts exp denote experimental and T 
theoretical values. 

~A. = ~ and that ~ is the same for the ground and 
excited states. With these assumptions we find for 
transitions with ~E « ~: 

"smearing out" of the added neutrons over differ
ent states A., i.e., if one takes account of pair 
correlations. In Table I, to illustrate this possi
bility we give values of ff~A. for all the values of A. 
entering in the shell of Sn119 which is being filled. 
Comparison of the exact solution of (6) with the 
first iteration shows that in finding ~(R2 ) one 
cannot stop at the first iteration, since it gives 
much too high results. 

(13') 

Evaluation of (13') gives i; ~ 1/2. 

DISCUSSION OF RESULTS 

Comparison of the theoretical values of C with 
experimental data for the isotope shift shows that 
the values of fPP and fnp obtained [BJ from the 
analysis of quadrupole moments give a satisfactory 
explanation of the isotope shift. One can improve 
the agreement between the theoretical and experi
mental values of C if one takes account of the 

Going on to a discussion of isomers, we note 
that the accuracy in the computation of ~( R 2 ) is 
lower for proton transitions than for neutron tran
sitions, since for proton transitions ~(R2 ) in
volves, in addition to the difference of the integral 
terms, the difference of the individually large single 
particle matrix elements r~A.. Thus the accuracy 
of the calculation depends essentially on how ac
curately the single-particle scheme gives the 
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relative change of rh, for different states. Cal
culations of the isomer shift constants (Table II) 
lead to the conclusion that the experimental detec
tion of the effect for these isomers by optical 
methods would be difficult, since the magnitude of 
the effect is at the limit of feasibility.C 12] For 
nuclei which can be studied by the M(:}ssbauer effect 
there is a great deal of (partially contradictory) 
data on the isomer shift. Let us discuss these 
nuclei in more detail. 

In order to characterize the isomeric transi
tions we have used, in addition to the spin of the 
excited state and the type of transition, data on the 
magnitudes and signs of the quadrupole moments 
Q and Q* in the ground and excited states. Com
parison of the experimental values of the quad
rupole moments with single-particle estimates and 
computations of Q and Q* assuming a particle 
(hole) state give additional information about the 
nature of the states and permit one to judge how 
good the single-particle assumption is. Depending 
on the signs of Q and Q*, the transitions are inter
preted either as particle or hole. Negative signs 
correspond to particle and positive signs to hole 
transitions. 

Let us consider some examples: 
28Ni61 • The spins and parities of the ground and 

excited states are 3/2- and 5/2-, M1 transition. 
There are no data on the quadrupole moment. In 
accordance with the single-particle level scheme, 
this is a particle transition. ~(R2 )/R2 = -1.5 x 10-3• 

30 Zn67 • Spins 5/2-, 1/2-, M1 transition; Q = 0.18 
b, which is about twice the single-particle esti
mate. According to the single-particle level scheme 
this is a hole transition, ~(R2 )/R2 = -1.6 x 10-3• 

50Sn119 • Spins 1/2+, 3/2+, M1 transition; Q = 0, 
Q* = -o.08 b, [t3] of the order of the single-particle 
estimate (-0.11 b). We regard this as a particle 
transition. ~(R2 )/R2 = -2.5 x 10-4• This result is 
in contradiction to the data of Shirley, [ 4] who gives 
a preliminary value of + 1.2 x 10-4• 

52 Te125 • Spins 1/2+, 3/2+, M1 transition; Q = 0, 
Q* = 0.20 b, [t4J which is twice the single particle 
estimate (0.11 b). This is classified as a hole tran
sition. ~(R2 )/R2 = 2.8 x 10-4, which agrees with 
ShirleyC 4J in order of magnitude, his preliminary 
value being~ 8 x 10-4• 

53I129• Spins 7/2+, 5/2+; Q = -0.5 b, Q* = -0.69 
b. [15]. The quadrupole moments are three times 
the single-particle values (-0.18 b). In this nu
cleus we are treating a transition of an odd proton. 
In accordance with the signs of the quadrupole 
moments this is classified as a particle transition. 
We get an interesting result for I129• If we calcu
late ~(R2 ) from the shell model we get a negative 

value, which is in contradiction with the experi
mental data.C 15J Including interactions changes the 
sign, with ~(R2 )/R2 = 1.5 x 10-3• 

54Xe129 • Spins 1/2+, 3/2\ M1 transition; Q = 0, 
I Q*l = o.48 b. c16J 

54Xe131 • Spins 3/2+, 1/2+, M1 transition; 
Q = -0.12 b, Q* = 0. The single-particle estimate 
gives Q = -0.11 b. 

In both the Xe isotopes the transition is classi
fied as particle. The values found for ~(R2 )/R2 

are equal and opposite, -2 x 10-4 for Xe129 and 
+ 2 X 10-4 for Xe131 • 

We note that the values given for ~(R2 )/R2 are 
obtained without making use of the picture of a 
deformation of the nucleus as a whole. 

Comparison of the calculations with single
particle estimates (cf. Tables II and III) shows that 
the effective charge approximation is completely 
inapplicable to the problem of the isomer shift. 
Thus, for neutron transitions this approximation 
even gives the wrong sign for ~(R2 ). For isomers 
with proton transitions, including the interaction of 
the odd proton with the core is also extremely im
portant: the magnitude of the effect is much less 
than the single-particle estimate. Sometimes one 
may find the situation already cited for I129-the 
single-particle estimates give the wrong sign for 
~(R2 ). In these cases the effect associated with 
the polarization of the core by the proton is larger 
than the effect produced by the proton itself. 

In conclusion I express my gratitude to Prof. 
A. B. Migdal for his interest in the work and thank 
M. 0. Mikulinskil for valuable discussions. 
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