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Output fluctuations of radiation detectors having dimensions much larger than the emitted 
wavelength are considered. The results are valid at any detector temperature. The cases 
of very large and very small instrumental time constants, of isotropic external radiation, 
and also of external radiation in a beam of small angular spread are analyzed in detail. 

1. INTRODUCTION 

PHENOMENA involving quantum fluctuations of 
the electromagnetic field have received much at
tention in recent years. Several investigators 
have studied fluctuations in the outputs of radia
tion detectors (especially in the visible and infra
red regions) in connection with the study of the 
sensitivity thresholds of the receivers. 

Milatz and Van de Velden [t] were the first to 
suggest that the threshold is determined by Ein
stein's equation, which in terms of the number of 
photons contained inside an isothermal cavity, 
within the frequency interval ~w, is 

(.1n2) = (n) (1 + N I g), (1) 

where g = w2~w/n2c3 is the spatial density of field 
states, N = ( n) /V is the mean photon density, 
and V is the volume of the cavity. The first term 
on the right side is the mean square fluctuation 
( ~n2 ) = ( n) of the number of noninteracting 
classical particles of mean density N; the second 
term can be interpreted as the mean square flue
tuation in the energy of noninteracting classical 
waves. Thus (1) relates classical "Poisson" 
fluctuations to classical "wave" fluctuations. 

Using Eq. (1), Lewis [2] obtained an expression 
for the fluctuations of the energy exchanged be
tween a "black" detector and an isothermal 
cavity, in agreement with the result obtained in CtJ. 
Jones [a] showed, furthermore, that (1) can be 
used to obtain an expression for the sensitivity 
threshold of any radiation detector that is in 
equilibrium with a cavity, independently of the 
mechanism employed in the detector. For the 
mean square number of photons ( ~2 ) exchanged 
between the detector and the cavity, Jones ob
tained 

where ( m) = 1/ 4 E catN is the mean number of 
photons absorbed in time t by a detector of 
aperture a and quantum efficiency E. 

These investigations became especially timely 
following the appearance of improved detectors, 
especially in the infrared region, [4] having sensi
tivity thresholds that agreed very accurately with 
the value computed from (2). These detectors also 
led to the important conclusion that the sensitivity 
threshold of any radiation detector depends on its 
efficiency and not on the microscopic absorption 
mechanism; this applies to photocells, bolometers, 
photoconductive cells etc. 

Quantum fluctuations of visible light became 
especially interesting following the experiment of 
Brown and Twiss, [5] who observed a correlation 
between the outputs of two photomultipliers ir
radiated by a thermal source. This correlation 
results from the wave properties of light, which 
in particle language are usually associated with 
the "bunching" of photons. [S] For visible frequen
cies the "wave" term in (1) and (2) is much 
smaller than the particle term. Therefore the 
correlation technique is at the present time the 
only means of investigating "wave" fluctuations 
of visible light. 

Brown and Twiss developed a detailed theory 
of the output fluctuations of two photomultipliers 
irradiated by a thermal source. [7] Unlike the 
thermodynamic derivation of (1), their theory is 
based on a detailed analysis of the interaction be
tween light and matter. The predictions of this 
theory agree well with experimental data. How
ever, when the theory is used to calculate the 
mean square fluctuations of photomultiplier out
put we obtain 

(.1m2)= (m)(1 +eN I g), (3) 

(.1m2)= 2(m)(1 + N I g), 
which differs from one-half of (2) by having the 

(2) factor E in the "wave" term. This discrepancy 
570 
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has been discussed for several years, [S-13] and 
many arguments have been advanced to support 
both (2) and (3). The authors of both [12] and [13] 
pointed out, at about the same time, that fluctua
tions in the incident radiation and in the emission 
from the detector cannot be considered independ
ent. Therefore the output fluctuations of a cooled 
"gray" detector do not comprise half of the out
put fluctuations of the same detector when in 
equilibrium with the radiation. 

In the present work an attempt is made to de
scribe phenomenologically the output fluctuations 
of a detector for any value of the dielectric con
stant and at any temperature. We believe that a 
great advantage of this description lies in the fact 
that it does not involve any hypotheses that are 
difficult to confirm, such as a specific hypothetical 
photoelectron distribution function, and makes it 
possible to consider detectors at any temperature. 
The result that will be given in Sec. 3 becomes 
either (2) or (3) under certain conditions; this 
confirms the views of certain authors. [12 • 13] In 
this section we consider the output fluctuations of 
a detector having a broad low-frequency passband. 
In Section 4 we shall consider a "cold" detector 
irradiated by a beam of waves having a very 
narrow angle of spread. 

It must be emphasized that we confine our
selves here, as did all the aforementioned authors, 
to radiation from thermal sources. The appear
ance of powerful coherent light sources has stim
ulated attempts to apply the aforementioned 
analysis to the detectors of laser emission. Lack 
of success here resulted from the fact that al
though a statistical operator describing laser 
emission is not known, it is clear that because of 
saturation effects the operator must be entirely 
different from the operator for thermal emis
sion.C14•15J 

2. DETECTOR OUTPUT 

We consider a detector in the shape of a dielec
tric plate that is much larger than the wavelengths 
A. corresponding to the considered frequencies. To 
permit neglect of energy flow through the sides of 
the detector we shall assume that the plate's 
transverse dimensions greatly exceed its thick
ness. Absorption is also so strong that the radia
tion passing through the plate transversely can be 
neglected. 

Unlike the aforementioned investigations, we 
consider fluctuations not in the number of ab
sorbed photons, but in the energy absorbed during 
a period of time determined by the passband of the 

low-frequency output filter. Accordingly, it is 
reasonable to represent the mean output current 
of the device as follows: 

(/ (t)> = ~ n (S) F ( w + (1)1 ) ei(co+co')t.dw dw' dr, 

S = S(w, w') = ;n ([EH']- {H'E]); (4)* 

here the primed quantities are functions of w', 
F ( w) is the characteristic of a low-frequency 
filter, and dr is an area element of the detector. 
For the correlation function we have 

l£'1 = (/(t)/(t')>- (/(t)>2 

= ~ <(nS) (nS1))0 F(w + w')F(w1 + w/) 

X exp {i[(w + w')t +(w1 + w{)t']} dw ... dw{ drdr', 

(5) 

with S1 = S ( w1, w1 ), and for the central moment 
of Hermitian operators we have introduced the 
notation 

(AB)0 = 1!2(AB + BA)- <A><B>. (6) 

We have previously shown [16] that these central 
moments in a transparent medium can be calcu
lated with the aid of classical field equations. It 
is easily seen that the presence of an absorbing 
detector does not change the situation. Indeed, 
Eqs. (4) and (5) are not changed when integration 
is shifted from the surface of the detector to a 
very close-lying plane. However, it is possible to 
use the formulas of the present work for the fields 
of black body radiation in this plane (in a vacuum). 

We require a simple consequence of Eq. (21) 
of [16], and an expression for the spectral density 
of extraneous (non-electromagnetic) electric in
duction D [17] t 

(DiD,/) = ilicth ::T (P-hi*- Ei.~t)6(w + w') 6(r- r'). 

Let the fields E, E', E1, and E1 be excited by 
identical sources at the temperature T. Then, 
since the field equations are linear their central 
moment is represented correctly by 

(EE'E1E{>o =' [ <EE~><E'E{) 

+ (EE/)(E'E1)]a(w, T, w', T), 

( T . ' T') - 1 th-1 liw ·h-1 liw' 
a w,. ' w ' - + c 2kT ct 2kT' · (7) 

If E and E', on the one hand, and E1 and E1, on 
the other hand, are excited by different sources 

*[EH1 = E X H'. 
t cth = coth. 
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having the respective temperatures T and T', 
we have 

(EE'EtEi'>o = 0 

(EE,E'E{)o = (EE')(EiE{)a(w, T, Wi, T'). (8) 

Thus in the phenomenological theory 'liJ can be 
interpreted as the correlation function of the 
classical quantity 

I = ~ I n [EH] F ( w + w') ei(w+w')t dw dw' dr 
4n J ' 

and the fourth order moments can be calculated 
from (7) and (8). 

We now expand the field strengths in Fourier 
space integrals (retaining the notation E, H for 
the spectral amplitudes), and then integrate with 
respect to dr, i.e., over the detector surface 
z = 0. Assuming for the sake of simplicity that 
the plate is a square of side L, we obtain 

I = !:__ ~ n [EH'] F ( w + w') ei(w+w')t sin (Xi + x{) L/2 
4n x1 +xi' 

sin(x2 + x2')L/2 
X + , dw dw' dxdx', 

. X2 X2 
(9) 

where K is the projection of the vector k sign w 
( k is the wave vector and k = w/ c) on the plane 
z=O, E=E(w,K) and H'=H(w',K') arethe 
plane wave amplitudes. The latter comprise the 
amplitudes of 1) the incident waves ( Einc. Hinc ), 
2) the reflected waves ( E0, H0 ), and 3) the 
thermal field of the detector ( Et, Ht ). Rytov [t 7J 
has shown that the last of these components con
tains, in addition to the radiation field, a quasi
stationary field that drops off rapidly with in
creasing distance from the surface and does not 
participate in the energy transfer of the system. 
We shall henceforth assign the energy of the 
quasi -~tationary field to the internal energy of the 
detector; Et and Ht will represent only the wave 
part of this field. 

We now note that an appreciable contribution to 
(9) comes only from the integration regions where 
I w + w' I :S ~Q ( ~Q is the low-frequency filter 
band) and IK + K'l :S 1/L. This means that in 
k-space the vector k' (or its reflection in the 
plane of the detector) must lie inside the solid 
angle ox = olf!o8 around k, where the angle oe is 
measured in the meridional plane, and olf; is 
measured in a plane perpendicular to the latter 
and passing through k. For these angles we easily 
obtain 

6¢ ~ '},/L, 

from which it follows that by virtue of the fore
going assumptions i\/L « 1 and ~/w « 1 these 

angles are small. We therefore represent each 
amplitude in (9) as the sum of two components (1 
and 2), which are orthogonal to the wave vector 
and to each other. Then, with a relative error not 
exceeding oe, we can substitute in the integrand 
of (9), 

2 2 

2j n [EiH'k] ~ L:. n {EiHi]. 
i, k=l i=1 

Let the electric vector of the waves after the 
first polarization process be parallel to the de
tector plane. Then in the reflected field we have 

Eo1 = RiEinc\ Hoi= k-1R,[kEinc1], 

k = (ki, k2, -ka), ka ;:;:,: 0, 

where R1 is the reflection coefficient for the first 
polarization. We have here 

Since E1 is perpendicular to k, k', k, and k', 
with a relative error of the order 68 we set 

[E 'H ''] ~ ka'E E ,, n inc . inc == If! inc1 inc ' 

etc. Therefore for the first polarization we have 

n[E1H'1] =cos 8[EinciE inc'1 (1- Rt') (1 + Ri) 

(10) 

where cos e = k3/k ( 0 =::; e =::; rr/2 ). 
Symmetrizing (10) with respect to w and w' 

and adding a similarly simplified expression for 
the second polarization, we find that the integrand 
in (9) can be put in the approximate form 

2 

n [EH'] = 2j cos 8 [E inc iE inc'i ( 1 - R;R;') 
i=1 

(11) 

3. OUTPUT FLUCTUATIONS OF A RECEIVER IN 
EQUILIBRIUM WITH RADIATION 

In the case of radiative equilibrium ortho
gonally polarized waves are statistically independ
ent, so that 

2 

<(n[EH']) (n[EiH/]))o = ~ ((n[EiH'i]) (n[E1iH1'i])> 0 

i=i 

2 

= cos 8 cos 8, ~ [ ( 1 - R;R;') 
i=i 
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(12) 

The fourth order moments can be represented by 
(7) and (8). 

Let a detector of temperature T2 be placed in 
equilibrium with radiation of temperature T 1• 

Then, from (7) we have 

where, for example, 

.E '.) /i(J) /i(J) ( ') ( + ') (Einc' inc! t = 8 2 cth 2kT 6 X + Xt 6 (J) CUt . 
Jt C COS 8 1 

As a result we have 

/i2(J)(J)' [ /i(J) /i(J)' ] 

= c2 (8:n:2) 2 cos2 8 cth 2kT1 cth 2kT1 + 1 

X [6(x + x1)c5(x' + xt')<'l(ffi + ffit)cS(ffi' + ffi/) 

+ cS(x + xt') b(x' +xi) 6(ffi' +cut) c5 (ffi +cut')]. 

Also, with the aid of (8), we obtain 

(E inciEt'iE inctiEu'i)o = (Et'iEt {i)(Einc iE incli) 

X a(ffi', Tz, ffi, Tt). 

(14) 

(15) 

(16) 

The first factor in the right-hand side of this 
equation is proportional to the detector emission 
intensity. Therefore from Kirchhoff's law we ob
tain 

E "E '") A;liffi liffi ' ' (17) ( t' t1 ' = 8 2 8 cth ZkT- 6 (X+ Xt ) 6 ( ffi + ffit ) , 
Jt c cos 2 

where Ai = 1 - I Ri 12 is the energy coefficient of 
abs_orP.ti9n. _Finally, applying (7) and (17) to 
( EfEf1Ef1 Eg), we find that the latter expression 
is equal to (14) multiplied by AiA{. with Tt re
placed by T2. 

Substituting (14)-(17) into (12), integrating 
over wu wf, K, and Kf, substituting the notation 
r - r' = p, t - t' = T, and writing 

~ exp [i (x + x') p]dr dr' =a (2n)2 6 (x + x'), (18) 

(in virtue of the condition A./L « 1 ), where u is 
the area of the detector, we obtain 

1i2cr (' 
'l' 1 = 128n4 J ffiro' IF ( ffi + ffi') 12 exp [i ( ffi + ffi')-r] 

I 

X ~[11-R;R/I 2 (cth 2~; cth::; +1) 
•=1 1 1 

n·· li' ) 
+ A;A/ ( cth Zk~ 2 cth Zk(J)T 2 + 1 

+2A/(1-Ai)(cth 2~;1-cth ::;
2 

+ 1)] dffidffi'dx. (19) 

To calculate this integral we must know how 
the complex reflection coefficients Ri depend on 
the frequency and on the angle e in the entire fre
quency interval. To facilitate the calculation and 
to obtain understandable expressions, we introduce 
a different (physically realizable) limitation on 
the high frequency band designated by ~w. We 
recall that an optical band of width ~w ~ 109 cps 
can be obtained from thermal sources. For any 
real instrument the low-frequency band width is 
clearly many times smaller. In the rf region both 
~w » ~Q and ~w « ~Q are possible; we shall 
consider these two extreme cases. 

A. ~w » ~Q. Since our results will subse
quently be compared with (2) and (3), we may 
assume in this case that the detector absorbs 
only in a band ~w that is much narrower than the 
carrier; (2) and (3) apply to this condition. Re
taining only rapidly varying functions of the fre
quency in the integrand of (19), setting dK 
= k2cos 8do, and integrating over positive fre
quencies, we obtain 

ft2crw4 2 
'I'r = -- ~ ~ IF(w- ffi') l2 cos(w- ffi')-r 

16n4c2 i=1 

X [A;2n1 (n1 + 1)+ A;A/nz(n2 + 1) 
+ A/(1- A;) (2n1n2 + n1 + n2)] dw dw' cos 8 do, (20) 

where na = %[coth('llw/2kTa) -1] is the mean 
occupation number of an oscillator at the temper
ature Ta and 11- RtRil ~ Ai when ~w » ~Q. 

We denote the absorption coefficient at the 
carrier fr:_~quency by Ai. With a rectangular 
shape of Ai and F ( w ) as functions of frequency, 
we have 
00 

~ A;21F(ffi- w') l2 cos(ffi- ffi')-rdffi dcu' 
0 

00 

=A;~ A;IF(cu- cu') l2 cos(cu- cu')-rdcu dw' 
0 

00 

~ ~ A;A/IF(ffi- w') 12 cos(cu- w')Tdcu dw' 

(21) 

For isotropic radiation the efficiency of the de
tector can reasonably be defined as 
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8 = { ~ (.:if!+ A2)COS 6 do/~ CQS 6 do 

= ~ ~ (At+ Jf2)cos e do. (22) 

This equation, in conjunction with (21), leads to 

n2crw4e ~w sin ~Q-r [ J.L 
'I'I=-4 3 2 nt+n2+-2 (nt2+n22) 

:rt c 't' :rt8 

(24) 

The first term within the square brackets in 
(23) is the sum of "particle" fluctuations in the 
incident radiation and the characteristic radiation 
of the detector; the second term is the sum of the 
"wave" fluctuations. The last term results from 
interference between the radiation of the detector 
and external radiation reflected by the latter. 
This term will, of course, vanish when one of the 
interfering components is absent (either n1 = 0 or 
n2 = 0 ): 

J.L 1 2 
1--2-----:.-2 ~ ~ A;(1- A;) cos e do= o, 

:rt8 :rti=! 

i.e., when Ai = 1. This represents the idealized 
case of a nonreflecting (perfectly black) detector. 
When the detector is at room temperature these 
"interference" fluctuations can make a considera
ble contribution to 'llr only at radio frequencies 
and for small detector efficiency ( € :S n2 ) • 

It is easily seen that (2) and (3) are actually 
limiting cases of (23). Before proceeding to the 
proof, we note that the angular dependence of the 
photoelectric yield was neglected in the derivation 
of (3). If the results are to be compared, we must 
therefore set 1J. = 27TE2 in (23). Setting the current 
output I equal to ml'iw/t (where m is the differ
ence between the numbers of photons absorbed 
and emitted in a time t ), we obtain the dispersion 
of m: ( ~ 2 ) = 'lli ( 0 )t2/ ( nw )2 . Substituting for 
'lli ( 0) from (23) and making the customary as
sumption t = 1r/ Ml, we obtain 

This equation is reduced to (2) for T1 = T2 = T, 
and to (3) for a "cold" detector ( T2 = 0, T1 = T ). 

It follows from (23) that detector output fluc
tuations are determined by the integral sensitivity 
only when the detector is in equilibrium with 
radiation. In other cases (especially at radio fre
quencies) 'lli can exhibit strong dependence on 
the angular sensitivity of the detector. 

B. ~w « ~Q. If we in this case also limit the 
spectral sensitivity of the detector, the behavior 
of the function 1 - Rii'R! inside the band ~~ be-

l 1 
comes important, i.e., we must take into account 
the frequency dependence of both the modulus and 
argument of Ri. We shall simplify the problem 
somewhat by assuming that incident external radi
ation passes through a filter with the energy 
characteristic ~ ( w) (the ~w band), but that the 
reflection coefficients vary little within the ~Q 
band. 

Within the framework of the present theory, we 
must take into account not only the filtered ex
ternal radiation, but also the characteristic radi
ation of the light filter. We assume that the latter 
is located sufficiently far from the detector so 
that it does not affect the emission from the 
latter. Consideration of this "zero-point" energy 
flow from a "cold" filter does not mean, of 
course, that any real energy transfer occurs, but 
is simply a formal consequence of the symmetrized 
mean values [see Eq. (4)] that do not vanish in the 
vacuum state and are used to represent second 
order moments. When this "zero-point" flux is 
taken into account we have for the incident field 

Einc; = Ei + Eri, 

where Ei is the filtered field strength and Ei is 
the "zer.o-point" filter emission that is independ
ent of E1• For the central moment of the incident 
field we now have 

<E inc iEinc 'iEinc tiEinct'i)o = <EiE'iEtiE/i)0 

+ <EriEr'iEf1iErt'i)o 

+ < (EiE r'i + E riE'i) (Et iE fl'i + E fliE/i) ) 0• (26) 

Equations (7) and (8) are used to express the 
rig:P,t-hand side of (26) in terms of the moments 1 ,. . ,. 
( E E?) and ( E}Ef}). For the first of these we 
obviously have, from (13), 

<E .E ,.) <D(w)h.w nw 
't' = 8 2 6 cth 2kT 6(x+xt')6(w+w/). 

:rtccos 1 (27) 

In order to obtain ( EiE{}) we note that for T = 0 
the behavior of the light filter (which is also at 
zero temP,eraty.re) does not change the vacuum 
mean ( ElncEi~c 1 ) 1 T=o· Therefore, 

Using (27), we then obtain 

<Eril!:u'i)=(1-<D(w)) 8s~gnw 6 6(x+xt')6(w+wt'). 
:rt c cos (28) 
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Repeating the calculations in part A, except for 
the fact that .P ( w ) and F ( w ) are now considered 
to be rapidly vanishing functions of w and that the 
reflection coefficients are constant in the interval 
.6.Q, we obtain 

n2ro'cr 
'I' r = 'I' r0 + 16n4c2 {L1J.tn12 + 2L2 [nen1 + 2n1~ (2ne - J.t)]}, 

(29) 

where wi is the correlation function of the output 
signal in the absence of external radiation: 

ft2 2 

'1'1o = _cr_l~~ roro'IF(ro + ro') l2 exp[i(ro + ro')-r] 
128n4 i=t 

X [A;A/ ( cth 2~;2 cth 2~~2 + 1) 

+ 2A/ (1- A;) (sigh ro cth 2~~2 + 1 )] dro dro' dx; 

(30) 
00 

L1 = ~ ID ( ro) 1D ( ro') IF ( ro - ro') 12 cos ( ro - ro') -r dro dro', 
0 

00 

L2 = ) ID ( ro) IF ( ro - ro') 12 cos ( ro - ro') -r dro dro'. ( 31) 
0 

When all the frequency characteristics are rec
tangular and .6.w « .6.Q, we obtain 

L = 4 sin2 (~ro-r/2) 
1 -r2 ' 

Lz = 4 sin~ro-r sin(~ro--r/2) 
'( '( 

(32) 

The mean square fluctuation becomes 

(33) 

Unlike the case represented by (23), the 
"wave" fluctuations are here determined only for 
a narrower .6.w band. The expression for the dis
persion of the "particle" and "interference" 
fluctuations, despite the different correlation 
functions, remains the same as previously and 
depends only on the band product .6.w.6.Q. 

4. COHERENT DETECTOR IRRADIATION 

We shall show in this section that the phe
nomenological theory leads to certain expressions 
that were previously obtained by means of a 
semiclassical analysis. [8•11 •18] The latter studies 
were based on an asswned Poisson distribution 
for the nwnber of photoelectrons ejected in a time 
t from the surface of a cathode at zero tempera-

ture; the mean number was proportional to the 
time integral of the instantaneous incident light 
intensity. This hypothesis leads to correct re
sults, although we do not believe that it has been 
justified rigorously . 

In speaking of coherent radiation we shall 
henceforth refer simply to the fulfillment of the 
condition that the detector area lies entirely in
side the coherence area A 2/ .6.o of a narrow inci
dent beam, where .6.o is the solid angle of the 
beam. We note that the coherence area A2/ .6.o 
coincides with the cross section of an elementary 
cell in the phase space of the beam. 

We asswne that the incident beam is discrimi
nated from the equilibriwn radiation by a suitable 
instrwnent. This is convenient, since all calcula
tions are simplified because the individual 
Fourier components are uncorrelated. A simple 
analysis also shows that when a « A o/ .6.w the ab
sence of a delta correlation between the separate 
Fourier components does not affect the final re
sult. Reasoning as in the derivation of (28), we 
arrive at the conclusion that for the second order 
moments of the incident field we may use the 
expressions 

<EiE 'i)- ~(8)1D(ro)nro nro I I 
1 - 8n2c cos 8 ctg 2kT () (X + Xt ) l) ( 00 + 001 ) • 

<E riEf11i) = (1- ~ (S)ID (ro)) 8 2nro sign ro6 (x1 + xt') 
:n: ccos 8 

X 6(ro +rot'}, (34)* 

where .P ( w) is the frequency characteristic and 
~ ( (J) is the angular characteristic of the instru
ment. The latter is taken to have the form 

~(8>={ 1, e~M 
o, e >~e. 

The second equation in (34) pertains to zero-point 
fluctuations in the incident field, and to an "ex
cited" light filter and collimator at zero tempera
ture. 

From (34) together with (12)-(17) we obtain for 
the detector at zero temperature 

ft2 2 

'1'r= 512 6 ~~ roro1 1F(ro+ro')l 2 exp[i(ro+ro1)-r] 
lt i=1 

X {. · .. } dro dro 1 dx dx1 dr dr1 , 

{ ... } =I1-R;R/I 2 <D(ro)~(e)[ ID(ro1)~(81) 

( nro nro1 ) 

X cth 2kT cth 2kT + 1 

*ctg =cot. 
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+ 2 ( 1 - <t> ( w') ~ ( 8')) (sign w' cth 2~; + 1 ) J » ~Q photons from t~w cells impinge on the de
tector in a time t. The photoelectron distribution 
therefore obeys Bose-Einstein statistics for the 
number v of particles distributed in t~w cells 
[see Eq. (42)]. When ~w « ~Q, photons from a 
single cell strike the detector in a time t, and 

Since a2 « f.. 2/ ~o, with ( K + K' ) p « 1 inside the 
coherence area, we have 

~ ~ (8)~ (8') exp [i(x + x') p] dr dr'"' a2~ (8)~ (8'). (36) 

Furthermore, 

~ ~(8)exp[i(x+x') p]drdr'"' 4n2a~(8)<'l(x'), 

the photoelectron distribution obeys Bose
Einstein statistics for the number v of indis
tinguishable particles [see Eq. (40)]. 

When we set A1 = aA2 it is not difficult to 
extend (39) to the case of external radiation with 
any degree of polarization. We shall not present 
this result but shall confine ourselves to men
tioning that it agrees completely with that ob

~ ~(8)~(8')dxdx'::::::: k2k'2(J).o)2, 

S ~ (8) <5 (x') dx dx'"' k2 /).o. (37) tained by Wolf. [t8] 

Assuming that the reflection coefficients vary 
very little in the frequency intervals ~w and ~Q, 
we let II - ~*Ri 12 = A 2. Moreover, for the sake 
of simplicity we shall consider linearly polarized 
radiation (A2 = 0 ). Then, substituting (36) and 
(37) into (35), if all frequency characteristics are 
rectangular we obtain 

W _ Ah2a/).on [L cr!).oA J (38) 
I - 4n2t-2 in --t-z- + Lz ' 

where L1 and L2 are given by (31). When written 
for the number of photons absorbed during a time 
t, this formula gives for the intensity of fluctua
tions 

where < v) = a~oAt~wn/2nt..2 is the mean number 
of photons absorbed from the beam during a time 
t = n/~Q. 

For ~w « ~Q we have 

(/).v2) = (v)((v) + 1), (40) 

which coincides with Mandel's equation for 
linearly polarized light. [11] The case ~w » ~Q 
has been analyzed by Purcell, [8] who obtained 

(!).v2) = (v) ( ~~/v>+ 1), (41) 

where 'Y is a constant, of the order of unity, that 
depends on the line shape. We note that for ~w 
» ~Q we have L1 ( 0 ) = L2 ( 0 ) = 2~w~Q; we then 
obtain from (39) 

(!).v2) = (v) ( 2n (t) + 1), (42) 
/).wt 

which coincides with ( 41) when 'Y = 1. 
Mandel [11] has given a simple interpretation of 

( 40) and ( 41) in particle language. When we recall 
that for the incident beam an elementary cell is of 
the order c/ ~w. it is clear that in the case ~w 

We have here confined ourselves to a detector 
with a flat surface. However, all our results can 
clearly be extended to detectors of any shapes 
that permit the use of surface reflection formulas. 
The problem is especially simple in the case of 
isotropic external radiation. It is then sufficient to 
divide the detector surface into separate plane 
elements having dimensions that are much larger 
than the correlation radius of the fields (i.e., the 
wavelength), whose fluctuations are thus mutually 
independent. Therefore a can be taken to repre
sent the entire detector area in all formulas of 
Sec. 3. 

The foregoing method will enable us, of course, 
not only to study the output fluctuations of a single 
detector, but also to calculate the mutual correla
tion function of output signals from two detectors. 
In the special case of "cold" detectors the result 
agrees with that obtained in [7]. 

In conclusion I wish to thank Professor S. S. 
Rytov for guiding this research. 
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