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General equations that describe nonlinear interaction of waves in a magnetoactive anisotropic

plasma are obtained. Explicit expressions are derived for the probabilities of scattering of
normal waves by plasma electrons and ions and for the probabilities of the decay processes.

1. INTRODUCTION

THE problems of nonlinear interaction of waves
in a plasma have recently attracted much attention,
both in connection with the extensive expansion of
experiments in which intense oscillations are ex-
cited in a plasma by various means (such as
noise[m]), and in connection with the theoretical
problems of finding the stationary or quasi-station-
ary spectra of the oscillations of a turbulent
plasma.[3¢) Nonlinear interactions of waves in a
plasma situated in a magnetic field were consid-
ered for some particular cases int5:6J (see3-1¢]

concerning wave interaction in an isotropic plasma).

In the present paper we attempt to use a previously
developed procedure!3:14] to obtain general equa-
tions describing nonlinear interaction of waves in
an isotropic plasma both in the presence and in the
absence of external magnetic fields. Unlike in
earlier papers !3:%), the results are not confined to
the assumption that the plasma is isotropic“ even
when H = 0, i.e., they are suitable for a description
of the interaction of waves in a system of inter-
penetrating plasmas, in the presence of beams,
etc. An important factor is that the results can be
used for an analysis of the interaction and non-
linear conversion of non-potential oscillations and
waves in a plasma, a fact of interest for the prob-
lem of interaction between a plasma and intense
high frequency radiation in the radio band and in
the optical band (see[“]; concerning non-potential
oscillations of an anisotropic plasma see[””“"]).
We confine ourselves, as in[w], to an analysis
of weakly damped waves, neglecting damping and

l)Many problems involving the interaction of potential
waves in an anisotropic plasma are considered in the cited
literature, especially in[°].

introducing the concept of the number of quanta.
This makes it possible to analyze in simplest
fashion the interaction of waves having random
phases. The equations obtained are limited by the
assumption of small nonlinearity, i.e., weak tur-
bulence of the plasma[”]. In this approximation,
the nonlinear effects describe the interaction be-
tween waves that satisfy the dispersion relations
of the linear theory.

Let us expand the linear fields in normal
wavesDHO], introducing for the wave o polariza-

tion vectors a: 2

(kzﬁij — kikj — mzeij)a.,j(k) == 0, ag” (k)ao (k) = 1. (1.1)

We neglect the antihermitian part of €jj.- We intro-
duce €Y:

&%(0, k) = (0, k) ajs(k)a*ic (k)

+ o2 (kas (k) ) (kao" (k)). (1.2)

If the dispersion equation contains only w?, we
have two roots, denoted below by w54 (K) = %|w 5K)|;
the corresponding normal unit vectors are denoted
by a5, (k). It is easy to see that a;_(—k) = ay. (k) and
consequently, in the expansion of the field in normal
waves

E(r, )= | dkaos(K) Eox (k) exp{i [kr — wox(K)t]} (1.3)
ot

we have E;_(—Kk) = E;,(k). From this we get for
random phases

CEi(k, 0)E;(K'0")> = ) tios (k) @jox (k) | Eox (k) |2

ot

X 0[o — wox (k)] 6(0 + )0 (k+ k). (1.4)

21t is convenient in what follows to use a gauge a, = 0.
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The number of quanta for the normal wave Nl‘: is

best introduced by comparing the quantum and
classical expressions for the energy of the elec-
tromagnetic field:

;n wct(k) Ve [ | (L.5)

o=a,_ (k)

[Exe|?2 = 0 %% (w, k)
®
The introduction of the number of quanta enables
us to interrelate the induced and spontaneous proc-
esses and makes it possible to obtain, by means of
a simple semiquantum analysis, general expres-
sions describing nonlinear wave interaction (Sec.
2). We also show that the sought probabilities,
which are contained in these equations, can be
expressed in general form, in the small-nonlinear-
ity approximation, in terms of the components of
the nonlinear plasma current (Sec. 3) and a tensor
describing the oscillations of the charge in the
field of the normal waves.

2. GENERAL EQUATIONS

To obtain general equations for the nonlinear
interaction of plasma particles and normal waves,
we introduce the probabhilities of the different
processes (the index ¢ pertains to the type
of wave, and a to the particle species): wo% (p,, k)
are the probability that a particle ¢ with momen-
tum Py will emit a wave o with momentum kg’;

woo'a (P » Ko Ko’ ) is the probability that a wave o
with momentum ks will be scattered by a particle
« with momentum p, and be transformed into a
wave o’ with momentum k/; uoo’c” kg, kg, kg”)
is the probability of decay of a wave ¢ into ¢’ and

" with corresponding momenta kg, kg/, and kg”
and frequencies wq, wg’/, and wg”; and
woo'a (P> Ko kg’) is the probability of emission
of two waves. In the quantum approach, the motion
of the particle must be characterized by quantum
numbers p, and n. It must be borne in mind here
that the emission probability depends on v = n’ —n.

In considering the scattering process it is con-
venient to write n’ —n=v —v’, assuming that
w77 @ depends on v and v/, The equations of non-
linear interaction of the waves are balance equa-
tions for the number of particles and the number
of waves. The derivation of such equations is a
simple generalization of 20 we present expres-
sions for the variation of the number of quanta
Nﬁ, assuming that the wave function of the parti-
cles f(p,) depends only on p; and p,, which char-
acterize the parameters of particle motion along a
helical line. We have

ONk®
ot

= 3 § o (pay ha) Na

avv’
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(ko e+

+ 2 S w\?vﬂ' * (Pa, ko, ka')Nchk

ag’v'y
(v —v)e*ou® of*
pL* op.*

ve*og* O0f* ] d
pe op) "

[ (Froz — kory) %

+

}d dke:

+ 3§ B (Dar b, ko) NN

ao’v'v

d a o a 0

X [(koz+kolz) 4 Wy eton® of ) dpaae
apz“ P opL

+ 2 Squ, ko [ (N Ny — NNy — NNy

>< udc'o'//(kd_’ k(\", kD’”) +_(Nka’Nk6” +NkUNkGI __ NkaNka”)

X u‘m'””(kg, —ko", ku'/)

+ (NN — NNy & + NN o)

X us%' (kg, kgry —kor)), (2.1)
where

led|

Etl

ke = {kg, (,00»}, wg® =

The equations for f(pa) are not given here, since
they will not be used. In Eq. (2.1) we take into ac-
count only induced processes.

To obtain Eqgs. (2.1)—(2.4) there is no need of
using the complete system of nonlinear plasma
equations and averaging the resultant relations
(see, for example,[9a] ), and we can use the corre-
spondence principlet!3:14], agssuming, for example,
that one of the Ng is quite small, so that one can
confine oneself to an examination of spontaneous
processes. The equations for the waves then take
the form

ONy°

=2 § Al (0e)dleo N (B2 (B K, Kor)

ag’v'v

-+ ’l't‘)"::(\{j (pa, ks, ko'))

+ 3§ diyr dleor NA N[5 (I, K, Fi)
oo’
+ w9 (ko, —kor, ko) + w0 (g, ko, —kor].  (2.2)

It is important that to find the sought probabilities
it is sufficient to employ (2.2).

3)Unlike in (2.1), the expression for the scattering takes
into account the spontaneous scattering.
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Let us find the change in the energy of the It is important that in the employed approach it is
normal wave o, due to decay and scattering. This sufficient, for the calculation of the probabilities,
change has, owing to (2.2), the form to confine oneself to the calculation of the nonlinear

owo plasma current j2.
Q°=_at"= S dpaf (Pa) Qo® (Pa) The result (3.2) can be used to calculate both
¢ the probabilities of the decay processes and the
_|_z S dko:dksN " Ny%| 0o (27) 2 scattering probabilities. Starting from (3.2) and
oo’ (3.3), assuming that j*?(k, w) is the nonlinear cur-

rent which is produced in the plasma when normal
waves are present in it, we can relate the decay
1t probabilities with S;;. Expanding the fields in
Fut? (o, ko, —kar)] (2.3) normal waves (1.3),1Jssubstituting (3.3) in (3.2), and
using the fact that the average values of the prod-
ucts of four E; can be broken up with the required
accuracy into paired products, we obtain

9
G = )| o) ot ¥y 1 (e o o) 0 =220 dkdkidke 3 |moi(k)|| e

0%, 6'+, 6"+

X [uo%" (ko, kot ko) + w9 (ko, —kor, korr)

Here QO (p,) is the change in energy upon scatter-
ing of a single test charge of the plasma in the

field of the wave o: -

o=a(k)
o'’

+@ew (Pa, ko, kor) ) (270) 3 X |Sox, ar, 07+ (00 (K), K, 0o (ki) , ki, 0002 (ka), ko) [2
vy’ '@y v, Vg’ .

X 6(k - k1 - k2)6 [(Do’(k)
The last relation makes it possible to determine

- ’ -_ ,7 ’ 2 44 2 .
the probabilities of scattering by considering the oo (ki) = 0a (ko) ]| Ensor|*| Enior [, (3.4)
emission of the wave ¢ by a test charge in the field
of the normal waves ¢’. Soorarr (k, @, k1, @1, ke, 02)

= i. k Si's k, ’k, ,k’ g’ k rg k . 3.5
3. CONNECTION BETWEEN DECAY PROBABILI- aai” () Sijo(k, 0, ki, @1, ke, 02) Bor; (k) dors (ko). (3-5)

TIES AND THE NONLINEAR PLASMA CURRE
COMPONENTS NT In the derivation of (3.4) we used the fact that

Let us consider a certain current j(k, w) in the Sije(k, @, ks, 01, ks, 02) = Sisi(k, 0, ko, 02, ki, @1). (3.6)

plasma. It is easy to find the intensity of its radia- This symmetry condition can always be satisfied,

tion from (see[13]) since (3.3) contains only the part of Sijs satisfying
a1 this condition.
Q° = —lim (__;l_g dkj(k, 0)E(k, 0)do, (3.1) To obtain the decay probabilities it is sufficient
T—>oc0

to express |Ekolz in terms of the number of quanta
where E(k, w) is the field produced by the current and to compare (3.5) with (2.4) 4

j(k., w). Expanding E(k‘, w) in normal waves an‘d u99'"" (kg, kor, ko) = 167 8 (ko — ko — ko) & [0 (Ko) — o (Ko-)
using ‘Maxwell’s equations to express E(k, w) in

terms of j(k, w), we obtain for a weakly absorbing — o (ko) ] 02 (ko) 02 (ko)
medium
2 6 X So‘/ ’r k, k ,k/, k' ko'/, k ’r 2
0o = 1im Z {au ak[a] 3 as’ (030K, 0) | [ Sam o 0 k), Koy (ko) Ko o))
T—>o0 o+ ] . e | . -1
X | —=— 0%° —— %%
F — l | o=0(k,) | o=a(k;,)
X 8 [0 — wox (k)] ‘ p 2 (0, k)l . (3.2) 0w ( 0w o=0
LG [0) P 1
X l—_mzeﬁ” o=0o(k ) (3'7)
When the nonlinearity is weak the plasma cur- dw o o=0lksr)
rent can be regarded as a quadratic function of the
intensity of the external field: 0 =|0ox|,  Sovor= Sot, o4, "4

7@ (k, o) P
)In the derivation of (3.7) we used the following relations,
— S dASijs(k, ©, ki, 01, ke, 02) E; (ky, 01) E, (ks, 02), which follow from the fact that the nonlinear current is real:
Siis (—k, —0, —ki, —01, —ks, —2) = §*;is(k, 0, ki, 04, ke, 02),
S*s_. 0. or—(—k, —0, —ki, —01, —k;, —0)

(3-3) = So+, o+, ar+ (K, @, ki, o1, ks, ©2).

dr = dkidkgdwidmzﬁ(k—ki—kz)ﬁ(m—(m—(Dz).
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Further, in ord(;r o write out the probabilities of
the decays u’? 7 (k,, —ky’, kg”) and

u"U"U”(kU, ky/, —kg#), which correspond either to
absorption of k;/ or to the absorption of kg”, it is
necessary to interchange in (3.7) the signs of the
corresponding four-momenta of the quanta, which
reduces to a reversal of the signs in the conserva-
tion laws and in the arguments of Sijs? it is also

necessary to recognize that
So, 01, —'* = So+, 0'4,01—. (3.8)

So. —gr, g = Sot, o1, 54

The nonlinear current in a plasma situated in a
magnetic field can be determined by solving the
system of nonlinear equations obtained by expand-
ing the kinetic equation in the field amplitudes:

SE (K, ©, ki, 01, ke, 02) = — D 2me? SPL dp1 Ap; durvr, v

ppvv

X exp[i(p — ) go+i(v' — v) @2l (0 — kv — pon®)
X AiBj(O)Z - kZZUz - V’(OH“) -1 fsfo(“) (pL, pz) , (3_9)
where

R 1 RS 1 A
B, = ‘?Z'Iu'ﬂew" D+L)+ 5 Jpr1e7% (D + L)

.(V—V)Ek .[1 A
—z(—mffw, By —i [7Jmewu (D—L)

1 A Vv —v) kix
+ —Z—Jp/_]e-uP“ (D—L)—(—m;z)—)l———l— Jp,'],

kyw— iky D'+ L

B3 = 2(01 ) ei‘PaJle
et ihy D'—L 9
20, 5 ¢ vt ugs
. . P
Ao =10 (Jpat'® +Jpne™®), Ag=vJ,, v = T_:L‘ )
) A 7] ks ~ 0
v,=—,D=-— — D, D=v =,
z & api W 26 1 J_apz
LYV (1 kuvz), I (v——v)vz’
Py 01 Py
a vy A 1~ 0 v A
ty= Yl gy, ty——ir, 20b,
Zg 22
NRLECEY, Sy PSR N Y
3 Za wy apz ’ 2 apl © ’
. ku km/
sin Qg = ——+, sin @, = :
=T = Thoy |

The argument of the Bessel functions J;, and J,/ is
z, = ky v} /wff, and that of the functions J,, and J/
is z = k v} /wf} ; the distribution fy(p|, p,) is not
assumed Maxwellian anywhere.
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If, in particular, the distributions of the ions
and of the electrons are Maxwellian, and the mag-
netic field is large so that k| v{* < w; for all
waves, then the tensor Sij becomes much simpler.
Let us consider some cases of decays of trans-
verse waves into transverse waves, transitions
forbidden in the isotropic case by the conservation
laws. If the waves propagate strictly along the
field, the decay is forbidden by the angular momen-
tum conservation law. Let us find the probability
of the decay of an extraordinary high-frequency
wave (wy > wpe) into an extraordinary high-fre-
quency wave (w, »> wHe) and into an extraordinary
wave of frequency w ~ w e, With all the foregoing
waves propagating transverse to the field. Substi-
tuting (3.9) in (3.7), we get

2, 84 kz
ey, [1+2

8nmlwmus wiw2 -

Cl)Oaz ]—1
O)Haz('l —_— (JJHa/(D)?‘

uttt —

X 8(0 — o1+ w2) 8 (k — ki + ko). (3.10)
The decay of a high frequency extraordinary wave
into a high frequency extraordinary and magnetic-
sound wave with propagation transverse to the
field is described by the formula

va = 0mi [ 0y

e2woetv akm®
it SV __EW0eVakM” _ _ ]
¢ Za 8nm2w1020 ke 8 (0r — 01+ @2) 6 (kar — ki + ko).
(3.11)
4. SCATTERING PROBABILITIES

We now proceed to the calculation of the scatter-
ing cross sections. To obtain these cross sections
we must regard j(k, w) in (3.2) as the current pro-
duced in the plasma by a charge p, with account of
the perturbations of the motion of the charge by
the normal waves of the plasma. The part of
j(k, w) independent of the wave field gives the
probabilities wg(pa) for the emission of waves by
a charge. On the other hand, the probabilities of
scattering are described by the part of the current
j(k, w) which is proportional to the first power of
the electric field of the waves:

j@ (k, 0) = { diy dohif® (k, 0, ki, 01) E;(ky, 01). (4.1)

It is necessary to take into account here the fact

that Af‘?‘) consists of two parts, which describe two
1)
physically different scattering mechanisms:

Aif@ (K, o, ky, 01) = Ai* D (k, o, ki, 01)
+ A (k, o, ki, ©1). (4.2)

The first, A(“, is connected with the oscillations
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of the charge in the field of the waves, while the
second, A? is connected with polarization effects
which arise in the plasma and are interpreted in
particular cases as emissions of the type of tran-
sition radiation from the plasma inhomogeneities
produced by the plasma waves 3. An important
factor is that in the case of electrons these cur-
rents can cancel each other, greatly reducing the
scattering cross section. For ions, owing to their
large mass, only A? s of importance for high
frequency waves; therefore scattering by ions, if
allowed by the conservation laws, yields nonlinear-
interaction effects which exceed greatly the effects
of induced scattering by the electrons(13],

Expanding in terms of normal waves in (4.1),
and then substituting (4.1) in (2.4), we obtain after
averaging over the phases

. (2m)8 \
Z Q°(pe) = lim ( T) 2 S dk dk; wo (k) 0?2 (ki)
o+ o+, 0'+
d -t oo |
(2
X ' B O ooy | g O | o=ugtii

X | A% 9% (K, o (K), Ky, 0o (ki) |2,

Aot Glt(k1 ﬁ)cri(k)y ky, ﬁ)d’i(ki))

Dg

=a’_, (k) Ak, o, ky, 01)ajorx(kq).

0k

(4.3)

Substituting in (3.3) E in the form of the sum of the
wave field and the field produced by the charge
moving on a helical line, we can readily express

A2 in terms of Sijs:

Aij@(k, o, ki, 1) = [Sijs(k, @, k — ki, © — w4, ki, 04)
+ Sisi(k, o, ki, 01, k — kg, © — @) ]

X Ej®(k — ki, © — 01). (4.4)
We see from (4.3) and (4.4) that the frequency

of the charge field w — wy = wgy — Wy, is gener-

ally speaking not close to the frequency of the

normal field oscillations. It is clear, however, that

the inverse Maxwellian operator has poles when

w = wgi(k)

IL:;%" (o, k)
k/@0?— ¢ (0, k)’

i (0, k) = )

”
(k285 — kik; — %) I1jq = big,

k2 [ 0gr? — Sarl(k, O)G”) = 0. (4.5)
The individual terms of this series describe the
process of scattering via a virtual polarization
wave 0", while the individual terms entering in the
operator are the Green’s functions for the corre-
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sponding waves. We obtain
e

E® = I (w, k) ) Moo — kv, —vor®],  (4.6)
Jy aJy
I'v=v, V(@) , To¥v=—iv, 7v(z) )
z 0z
kiv,®
Fs=v,Jv(2), 2= — . (4.7)

(OHG’

Substituting (4.4)—(4.7) in (4.3) and comparing with
(2.5), we obtain the scattering probability in the
form

004

Wy (P, ko, kor) = 2002 (kor) 8 [(Dc(kc) — 0o’ (kor)

—1

0)26

— (ko - ko) Uy — vou®] %

o=0ak;)

1
0)=0)U/(kol) X l A(i);ic’:l_— + a‘l:0'+(k°')
X [Sisj(km (l)u+(ka)7 kg, (‘)6’+(k°')’ ks, w2)

+ Sijs (kﬂ'v (D0'+(k0')7 k21 w2, kO"y e (kc!/)] ajU’-{»- (kal)

IT5¢°" (ks, w2) 2

7 TV . .
w22 — €9 (ko, 02) (4.8)

X2
ey
ky = ks — ko, W2 = Wg (ku) - 030'(]{6') .

The tensor Ajj can be obtained by solving by
perturbation theory the equation of motion of the
charge in the field of the normal waves and in an
external magnetic field.

For arbitrary charge velocities we obtain

e ——— .
A (k, o, ki, 01) = _’;;1/1 — V2 eiv-WPR

X 8[w (k) — o (ki) = (k; — ki/) v, — (n — V) or®], (4.9)

where
Rij = PJ'i + I'iPks; Pt = ?QZZLGZ‘[PJV — qkix
— WHa
Q U_Lz

x(B++mimB_)+

iQ WHa
0 — ond [p]”“ ekix <B++ Q B‘)

2 -

P2 =

2
— P (21— Timaeto o et |

WHa

o ot [P 108 (B

Q U_LZ . .
_(]v_zeZup - ]v+2e—2w) -’ ’
WHa 2 Jd

Q
P2 = B )
! WHo +

OHa
)

Q
Pl = — 5 [p]v + iqkyy (B_ +

QZ — WHa

L‘_Lz . .
— T (2 Tt Typpeti) |
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Q v, i0He
v kol G @ b ) = vane].
WHa
PZ-—_————[ (kx k ) v ZB—]'
8 QZ—(DHQZ [OT] ! +l Ho v d oLy l

Pg = iqB+(k11/m1_UZ)7 Py} = —qB—(kiz/wi__vz),
P = iQ1[(1 — v2) Ju — q(k1uBy — ik1yB-)],

Ba=(Jy1e®  Juie™®); Tt = q(Jupse™® + Jpse=i9),

Iy = —-lq (Ju_,_ief‘l’ — ]uiie—iq’) , I's= %- ].lh

(p =1 — k0, / 01, q =0, /297

Q = o(ki) — kv, — vou®). (4.10)

In a plasma with a Maxwellian velocity distri-
bution situated in a strong magnetic field
(klvf‘ <« wff), ¥ —v runs only through the values
0 and +1. When p —v = 0 the scattering is both
from electrons and ions if

(ke — k& )vri > (b — k) vre > oy,
and from ions only if
(kz - kzl) vri > 2 > (ki - kz,) UTe.

When p —v = +1, for scattering by ions it is
necessary to have

(kz — k) vri > 02 &= oms.

The condition for the electrons is similar.
Assuming the spatial dispersion of the w and w’
waves to be weak, we simplify Sijs for the case of
scattering by ions. Let us write by way of an ex-
ample an equation describing the interaction of
plasma waves with frequencies w and w’ ~ wye, in
a narrow cone along the field, when T; > T,. When

k—K'|2
1 I | ~1

k,—k/)%rp? 0 —o’)?
( ) ( )
|k, — k|2 T.
> T
this equation takes the form
aws(w, 6) ayn Ws(o, 6) , .., Si 6’
3372w § do’ do’ W, (0, 0)
|k, — & |vr: (0 — )4
¢ 2 2 . —1]2
>\((1)+0.) )X (_0,_(0 (k k/)kl 1|
(4.11)

Here p—v =1, el —1=(k, ~k)) U, W, o),
and Wsl(w', ') are the energy dens1t1es of the s
and s’ waves, averaged over the angle ¢ in the
plane perpendicular to the field, while w, w’ and
6, 6’ are their respective frequencies and wave-
vector angles with the external magnetic field.
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The scattering by electrons is usually small
compared with the scattering by ions. It must be
noted that in a strong magnetic field kva < wg,
in scattering by electrons, the compensation of
the two scattering mechanisms (4.2), unlike the
isotropic casel!3 , can occur only in particular
cases (|k, —k|%/|k —k’|2 ~1, T, » T;). But even
in the absence of compensation, the scattering by
the electrons is usually small compared with
scattering by ions. Thus, for example, for the
1nteract10n of two plasma waves with frequencies

w, w’ ~ (@gewyi) % we obtain when pu—v =0
AW, (o, 6)
dt
_ :rﬂ/n_W_s((o, ) 1 Sd  de sin 0 W (o, )
16 VZ nmevTez UTe o’
&—112 i+ 0?2 (o —o)d
€z I Ikz+kzllz Ikz'_kzlls
kit k4 Tk %k k%K)
Wzt cos? 0 cos 0’ k22
1 1
= T (e ) @12

In this plasma-wave frequency region the interac-
tion turns out to be stronger for waves propagating
transverse to the field. A detailed analysis of the
equations which follow from (3.9) and (4.8) shows
that in the frequency region w ~ wpe the plasma
waves interact most strongly in the angle region
0, 0" < 1.

As can be seen from these examples, the non-
linear wave interaction effects described above
can find application in problems of turbulent heat-
ing of plasma, in astrophysics, etc.
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