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General equations that describe nonlinear interaction of waves in a magnetoactive anisotropic 
plasma are obtained. Explicit expressions are derived for the probabilities of scattering of 
normal waves by plasma electrons and ions and for the probabilities of the decay processes. 

1. INTRODUCTION 

THE problems of nonlinear interaction of waves 
in a plasma have recently attracted much attention, 
both in connection with the extensive expansion of 
experiments in which intense oscillations are ex
cited in a plasma by various means (such as 
noise[1•2J), and in connection with the theoretical 
problems of finding the stationary or quasi-station
ary spectra of the oscillations of a turbulent 
plasma.C3•4J Nonlinear interactions of waves in a 
plasma situated in a magnetic field were consid
ered for some particular cases in [5•6] (see [3- 14] 

concerning wave interaction in an isotropic plasma). 
In the present paper we attempt to use a previously 
developed procedure[13•14J to obtain general equa
tions describing nonlinear interaction of waves in 
an isotropic plasma both in the presence and in the 
absence of external magnetic fields. Unlike in 
earlier papers[ 13 • 9J, the results are not confined to 
the assumption that the plasma is isotropic 1 l even 
when H = 0, i.e., they are suitable for a description 
of the interaction of waves in a system of inter
penetrating plasmas, in the presence of beams, 
etc. An important factor is that the results can be 
used for an analysis of the interaction and non
linear conversion of non-potential oscillations and 
waves in a plasma, a fact of interest for the prob
lem of interaction between a plasma and intense 
high frequency radiation in the radio band and in 
the optical band (see [ 14]; concerning non-potential 
oscillations of an anisotropic plasma see [15 •16]). 

We confine our!=Jelves, as in [13], to an analysis 
of weakly damped waves, neglecting damping and 

1 )Many problems involving the interaction of potential 
waves in an anisotropic plasma are considered in the cited 
literature, especially in[•]. 

introducing the concept of the number of quanta. 
This makes it possible to analyze in simplest 
fashion the interaction of waves having random 
phases. The equations obtained are limited by the 
assumption of small nonlinearity, i.e., weak tur
bulence of the plasma [17]. In this approximation, 
the nonlinear effects describe the interaction be
tween waves that satisfy the dispersion relations 
of the linear theory. 

Let us expand the linear fields in normal 
waves [18- 20], introducing for the wave a polariza
tion vectors aa: 2l 

(k26ii- kiki- w2Bij)aai(k) = 0, aa"(k)aa(k) = 1. (1.1) 

We neglect the antihermitian part of Eij. We intro
duce Ea: 

ea(w, k) = Eij(W, k)aia(k)a\a(k) 

+ w-2 (kaa (k)) (kaa • (k)). (1.2) 

If the dispersion equation contains only w2, we 
have two roots, denoted below by Wa±(k) = ± lwa(k)l; 
the corresponding normal unit vectors are denoted 
by aa±(k). It is easy to see that aa_(-k) = ad+(k) and 
consequently, in the expansion of the field in normal 
waves 

E (r, t) = ~. ~ dkaa±(k)Ea±(k) exp{i [kr- Wa±(k) t]} (1.3) 
a± 

* we have Ea_(-k) = Ea+(k). From this we get for 
random phases 

(Ei(k, w)Ei(k'w')> = ~ aia±(k)aja±(k) IEa±(k) 12 

a± 

X (I [w- Wa± (k)] 6 ( w + w') (I (k + k'). (1.4) 

2)It is convenient in what follows to use a gauge a 4 = 0. 
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The number of quanta for the normal wave Nk is 

best introduced by comparing the quantum and 
classical expressions for the energy of the elec
tromagnetic field: 

1Ekal2 = 2~2 wa2(k)Nka /I !w oha(w, k) I "'="'a+(k)" (1.5) 

The introduction of the number of quanta enables 
us to interrelate the induced and spontaneous proc
esses and makes it possible to obtain, by means of 
a simple semiquantum analysis, general expres
sions describing nonlinear wave interaction (Sec. 
2). We also show that the sought probabilities, 
which are contained in these equations, can be 
expressed in general form, in the small-nonlinear
ity approximation, in terms of the components of 
the nonlinear plasma current (Sec. 3) and a tensor 
describing the oscillations of the charge in the 
field of the normal waves. 

2. GENERAL EQUATIONS 

To obtain general equations for the nonlinear 
interaction of plasma particles and normal waves, 
we introduce the probabilities of the different 
processes (the index a pertains to the type 
of wave, and a to the particle species): waa (Pa, ka) 
are the probability that a particle a with momen
tum Pa will emit a wave a with momentum ka'; 

I 

waa 0! (Pa, k a• ka') is the probability that a wave a 
with momentum ka will be scattered by a particle 
a with momentum p .... , and be transformed into a 

u I II 

wave a' with momentum ka'; uaa a (ka, ka'• ka") 
is the probability of decay of a wave a into a' and 
a" with corresponding momenta ka, ka', and ka" 
and frequencies w a• w a', and w a"; and 
waa'a (Pa• ka, ka') is the probability of emission 
of two waves. In the quantum approach, the motion 
of the particle must be characterized by quantum 
numbers Pz and n. It must be borne in mind here 
that the emission probability depends on v = n' - n. 

In considering the scattering process it is con
venient to write n' - n = v - v', assuming that 

I 

waa a depends on v and v', The equations of non-
linear interaction of the waves are balance equa
tions for the number of particles and the number 
of waves. The derivation of such equations is a 
simple generalization of[20J. We present expres
sions for the variation of the number of quanta 
Nk' assuming that the wave function of the parti
cles f(pa) depends only on Pl and Pz• which char
acterize the parameters of particle motion along a 
helical line. We have 

[( ar ) ve"'wn"' aja. J 
X kaz -a a. +--"'--a a. dp"' 

Pz , P.L P.L 

Ct0'1'V1'V 

[ 8/"' (v' + y)e"'wn"' aja. J 
X ( kaz + ka•z) --+ ------< · -- dpa. dka• ap."' P.L a. ap.l_ 

+ ~ ~ dka' dka" [(Nka'Nka"- NkaNka'- NkaNka") 
a' a" 

(2.1) 

where 

ka ={ka, Wa}, 

The equations for f(pa) are not given here, since 
they will not be used. In Eq. (2.1) we take into ac
count only induced processes. 

To obtain Eqs. (2.1)-(2.4) there is no need of 
using the complete system of nonlinear plasma 
equations and averaging the resultant relations 
(see, for example, [Sa]), and we can use the corre
spondence principle[t3,14J, assuming, for example, 
that one of the Nk is quite small, so that one can 
confine oneself to an examination of spontaneous 
processes. The equations for the waves then take 
the form a> 

aNka "' \ !l.a' 
~ = LJ: J dpa./(Pa.)dka,Nka'(ww,(Pa., ka, ka,) 

a.a'v'v 

+ w":v: (Pa., ka, k,;-) ) 

+ ~ ~ dka'dka,Nka'Nka"[uaa'a"(ka, ka', kan) 
a a' 

It is important that to find the sought probabilities 
it is sufficient to employ (2.2). 

3 >unlike in (2.1), the expression for the scattering takes 
into account the spontaneous scattering. 
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Let us find the change in the energy of the 
normal wave u, due to decay and scattering. This 
change has, owing to (2.2), the form 

awcr "" i Qcr=m= L.J J dpaf(Pa)Qacr(Pa) 
a 

+ ~ ~ dkcr,dkcrNkcr'Nkcrlrocrl (2:n:)-3 

crcr' 

(2.3) 

Here Qu (Pa) is the change in energy upon scatter
ing of a single test charge of the plasma in the 
field of the wave u: 

Qcr(Pa)= ~ ~ ro(kcr)dkcrdkcr,Nkcr'(w~~;(Pa,kcr,kcr,) 
cr'vv' 

The last relation makes it possible to determine 
the probabilities of scattering by considering the 
emission of the wave u by a test charge in the field 
of the normal waves u'. 

It is important that in the employed approach it is 
sufficient, for the calculation of the probabilities, 
to confine oneself to the calculation of the nonlinear 
plasma current j< 2>. 

The result (3.2) can be used to calculate both 
the probabilities of the decay processes and the 
scattering probabilities. Starting from (3.2) and 
(3.3), assuming that j< 2>(k, w) is the nonlinear cur
rent which is produced in the plasma when normal 
waves are present in it, we can relate the decay 
probabilities with Sij s. Expanding the fields in 
normal waves (1.3), substituting (3.3) in (3.2), and 
using the fact that the average values of the prod
ucts of four Eu can be broken up with the required 
accuracy into paired products, we obtain 

I a ,-1 
Qri = 2(2:n:) 2 ~ dkdk1dk2 L lrocr±(k) I aro ro2er1 "'="'a<k> 

a±, a'±, a"± 

X 6(k-k1-k2)6[rocr(k) 

- rocr' (k1)- rocr" (k2)] I Ek,ri' 121 Ek,<J" 12, (3.4) 

(3.5) 
3. CONNECTION BETWEEN DECAY PROBABILI

TIES AND THE NONLINEAR PLASMA CURRENT 
COMPONENTS In the derivation of (3.4) we used the fact that 

Let us consider a certain current j (k, w) in the 
plasma. It is easy to find the intensity of its radia
tion from (see[13]) 

Qcr =-lim (2:rt)~ ~ dkj(k, ro)E(k, ro)dro, (3.1) 
T-+oo T 

where E(k, w) is the field produced by the current 
j (k, w). Expanding E(k, w) in normal waves and 
using·Maxwell's equations to express E(k, w) in 
terms of j (k, w), we obtain for a weakly absorbing 
medium 

Qcr =lim (2';} 6 ~ dwdklrol ~ lacr±* (k)j(k, ro) 12 
T~oo a± 

I a ,-1 
X 6[w-rocr±(k)], aw ro2ecr(ro,k) • (3.2) 

When the nonlinearity is weak the plasma cur
rent can be regarded as a quadratic function of the 
intensity of the external field: 

j;!2>(k, ro) 

= ~ dA.S;js(k, ro, k1, W1, k2, ro2)Ei(k1, ro1)Es(k2, w2), 

dt.. = dk1 dk2 drot dro2 6 (k - k1 - k2) {) ( ro - ro1 - ro2) . 

(3.3) 

This symmetry condition can always be satisfied, 
since (3.3) contains only the part of Sij s satisfying 
this condition. 

To obtain the decay probabilities it is sufficient 
to express I Ekul 2 in terms of the number of quanta 
and to compare (3.5) with (2.4) 4>: 

ucrcr'cr"(kcr, kcr,, kcr") = 16:rt 6(kcr- kcr,- kcru){) [ro(kcr)- ro(kcr') 

(3. 7) 

4 >1n the derivation of (3.7) we used the following relations, 
which follow from the fact that the nonlinear current is real: 

S;;, ( -k, -(1), -kt, -(I) I, -kz, -wz) = s· ji• (k, w, kt, w,, kz, Wz), 

S*a-. a'-· a·-(-k, -w, -k1, -<•li, -kz, -W) 

= Sa+. a•+. a•+ (k, w, k,, Wt, kz, Wz). 
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Further, in ordEir ,to write out the probabilities of 
the decays u O" -O" O" (kO", - kO"', kO"") and 
uO"O"' -O"" (kO", kO"', - kO""), which correspond either to 
absorption of kO"' or to the absorption of kO"", it is 
necessary to interchange in (3. 7) the signs of the 
corresponding four-momenta of the quanta, which 
reduces to a reversal of the signs in the conserva
tion laws and in the arguments of Sij s; it is also 
necessary to recognize that 

So, <1', -o" = So+, o'+,o:<-. (3.8) 

The nonlinear current in a plasma situated in a 
magnetic field can be determined by solving the 
system of nonlinear equations obtained by expand
ing the kinetic equation in the field amplitudes: 

S~J~ (k, W, k1, W1, k2, Wz) = - ~ 2:rte3 ~ p..!. dp..!. dpz i'Jw+v', ll+V 

llll'vv' 

X eX'p [i (11'- f.l) cpo + i (v'- v) cp2J( w- kzVz- f.lWH"') - 1 

X A;Bj( C02- kzzVz- v' WH"') - 1 r~/o(a) (P..L, Pz)' (3.9) 

where 
A 1 ,A 1 ,A 

B1 = ZJ~'-'+le'~'(D + L) + 21~'-'4-'~'(D + L) 

L = v' -v (i- k1zVz ), 
p j_ (01 

. ku 
smcpo=~, 

L' = (v'- v) Vz, 

Pj_ 

The argument of the Bessel functions Jv and Jv' is 
z2 = k21 v~ !w}i, and that of the functions J f..l and J f..l' 

is z = k 1 v~ /w}i; the distribution f 0(p 1 , Pz) is not 
assumed Maxwellian anywhere. 

If, in particular, the distributions of the ions 
and of the electrons are Maxwellian, and the mag
netic field is large so that k 1 vf « w<fl for all 
waves, then the tensor Sij s becomes much simpler. 
Let us consider some cases of decays of trans
verse waves into transverse waves, transitions 
forbidden in the isotropic case by the conservation 
laws. If the waves propagate strictly along the 
field, the decay is forbidden by the angular momen
tum conservation law. Let us find the probability 
of the decay of an extraordinary high-frequency 
wave (w 1 » WHe) into an extraordinary high-fre
quency wave (w 2 » w He) and into an extraordinary 
wave of frequency w ~ w He• with all the foregoing 
waves propagating transverse to the field. Substi
tuting (3.9) in (3.7), we get 

(3.10) 

The decay of a high frequency extraordinary wave 
into a high frequency extraordinary and magnetic
sound wave with propagation transverse to the 
field is described by the formula 

VA = WHi I Wo; 

4. SCATTERING PROBABILITIES 

We now proceed to the calculation of the scatter
ing cross sections. To obtain these cross sections 
we must regard j (k, w) in (3.2) as the current pro
duced in the plasma by a charge Pa with account of 
the perturbations of the motion of the charge by 
the normal waves of the plasma. The part of 
j (k, w) independent of the wave field gives the 
probabilities w~(Pa) for the emission of waves by 
a charge. On the other hand, the probabilities of 
scattering are described by the part of the current 
j (k, w) which is proportional to the first power of 
the electric field of the waves: 

j;("'l(k, w) = ~ dk1 dw1A;/"'l(k, w, k~, w1)Ei(k1, w1). (4.1) 

It is necessary to take into account here the fact 
that A(a) consists of two parts, which describe two 

ij 
physically different scattering mechanisms: 

A;/"') (k, co, k~, CJ)1) = A;i"'(1) (k, co, k1, Wi) 

(4.2) 

The first, A(!), is connected with the oscillations 
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of the charge in the field of the waves, while the 
second, A< 2l is connected with polarization effects 
which arise in the plasma and are interpreted in 
particular cases as emissions of the type of tran
sition radiation from the plasma inhomogeneities 
produced by the plasma waves [l3]. An important 
factor is that in the case of electrons these cur
rents can cancel each other, greatly reducing the 
scattering cross section. For ions, owing to their 
large mass, only A< 2l is of importance for high 
frequency waves; therefore scattering by ions, if 
allowed by the conservation laws, yields nonlinear
interaction effects which exceed greatly the effects 
of induced scattering by the electrons [13]. 

Expanding in terms of normal waves in (4.1), 
and then substituting (4.1) in (2.4), we obtain after 
averaging over the phases 

~ . (2n) 6 .., (' 
,wQ"(Pa)=hm-1'- ~ J dkdk1 wcr(k)wcr,2 (kt) 
a± a±,ar± 

(4.3) 

Substituting in (3.3) E in the form of the sum of the 
wave field and the field produced by the charge 
moving on a helical line, we can readily express 
A< 2l in terms of Sijs: 

A;}2l(k, w, k,, wt) = [Sijs(k, w, k- k,, w- w,, k,, w1) 

+ Sisi(k, w, k,, w,, k- k1. w - wt)] 

(4.4) 

We see from (4.3) and (4.4) that the frequency 
of the charge field w - w 1 = w u± - Wu '± is gener
ally speaking not close to the frequency of the 
normal field oscillations. It is clear, however, that 
the inverse Maxwellian operator has poles when 
W = W CT±(k) 

(4.5) 

The individual terms of this series describe the 
process of scattering via a virtual polarization 
wave u", while the individual terms entering in the 
operator are the Green's functions for the corre-

sponding waves. We obtain 
e 

Es(a) =rise( (J). k)--·J'eV{j [w- kzVz- VWH"], (4.6) 
· (2n) 3 

vlv(z) 
ft" = Vj_---, 

z 
. 8lv(z) 

f.v = -Wj_---• az ' 
kj_Vj_" 

Z=--
WH" . 

(4.7) 

Substituting (4.4)-(4.7) in (4.3) and comparing with 
(2. 5), we obtain the scattering probability in the 
form 

cro' 
Wv (Pa, ka, ka') = 2wcr,2 (kcr') {j [wcr(kcr)- Ulcr'(kcr') 

(4.8) 

k2 = kcr- kcr', Ul2 = Wcr(kcr)- Ulcr'(kcr'). 

The tensor Aij can be obtained by solving by 
perturbation theory the equation of motion of the 
charge in the field of the normal waves and in an 
external magnetic field. 

For arbitrary charge velocities we obtain 
e---. 

A;/"l (k, w, k,, w1) = -l'1 - v2 e'(v-v.J'PR;i 
m 

where 

2 iQ r ( UlHa. ) Pz = QZ _ 2 plv- qk!x B+ +---;:) B_ 
" Wua L •• · 
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Pt3 = iqB+(ktz/Wt- Vz), Pz3 = -qB-(ktz/Wt- Vz), 

Pi= iQ-I [(1- Vz2) lv- q (ktxB+- iktyB-) ], 

(p = 1 - ktzVz I Wt, q =· v_, I 2Q, 

The scattering by electrons is usually small 
compared with the scattering by ions. It must be 
noted that in a strong magnetic field k 1 v f « w~, 
ir.. scattering by electrons, the compensation of 
the two scattering mechanisms (4.2), unlike the 
isotropic case [13], can occur only in particular 
cases ( lkz- k~l 2/lk- k'l 2 ~ 1, Te » Ti). But even 
in the absence of compensation, the scattering by 
the electrons is usually small compared with 
scattering by ions. Thus, for example, for the 
interaction of two ~lasma waves with frequencies 
w, W 1 ~ (wHewHi) 1 2, we obtain when J-1.- v = 0 

(4.10) dW .. (w, 8) 

In a plasma with a Maxwellian velocity distri
bution situated in a strong magnetic field 
(k 1 vf « wij), J-1. - v runs only through the values 
0 and ± 1. When J-1. - v = 0 the scattering is both 
from electrons and ions if 

(kz- kz') VTi ~ (kz- kz') VTe ~ Wz, 

and from ions only if 

(kz- kz') VTi ~ Wz ~ (kz- kz') VTe. 

When J-1. - v = ± 1, for scattering by ions it is 
necessary to have 

(kz- kz') VTi ~ Wz + WHi. 

The condition for the electrons is similar. 
Assuming the spatial dispersion of thew and w 1 

waves to be weak, we simplify Sijs for the case of 
scattering by ions. Let us write by way of an ex
ample an equation describing the interaction of 
plasma waves with frequencies w and w 1 ~ w He• in 
a narrow cone along the field, when Ti » Te. When 

1 I k- kllz 
~---;---2--2 ~ I 2 ~ 1• ( kz - kz ) rDi ( (J) - (J) ) 

I kz - kz' 12 Te 
1~ ik-k'lz ~ T; 

this equation takes the form 

dWs(w, 8) = l'qln W.(w, ~ 1 dw' d8, sin~Ws•(w', 8,) 
dt 32 y2 nm;vT;2 J w' 

X (w2+w'2) X lkz-~z'lvTi (w'-w)" I z 112 
(J) - (J) . (k- k')" 8z - . 

(4.11) 

Here 11 - lJ = 1 E [ - 1 = (k - k 1 )-2r-2 W (W e) 
r- ' z z z De' s ' ' 

and Ws'(w', e') are the energy densities of the s 
and s 1 waves, averaged over the angle q; in the 
plane perpendicular to the field, while w, w' and 
e, e1 are their respective frequencies and wave
vector angles with the external magnetic field. 

dt 

= n l'n_ Ws(w, 8) __ 1_~ dw' d8' sin 81 Ws•(w', 8,) 
16 l'2 nmeVTe2 VTe W1 

f ( 1 1 ) 
8z = ( k - k ')2 -2 + -.2 + 1. z z rne fDt I 

(4.12) 

In this plasma-wave frequency region the interac
tion turns out to be stronger for waves propagating 
transverse to the field. A detailed analysis of the 
equations which follow from (3.9) and (4.8) shows 
that in the frequency region w ~ w He the plasma 
waves interact most strongly in the angle region 
e, e' « 1. 

As can be seen from these examples, the non
linear wave interaction effects described above 
can find application in problems of turbulent heat
ing of plasma, in astrophysics, etc. 
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