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The effect of a nonmagnetic impurity on the critical temperature Tc of a superconductor 
with overlapping energy bands is investigated. It is shown that a significant change in the 
magnitude of Tc is produced by interband scattering of electrons by the impurity. The 
extreme cases of small and large impurity concentrations are investigated. In the former, 
an increase of concentration is accompanied by a linear decrease of Tc. The proof is based 
on the definition of the critical temperature as the eigenvalue of the equation for bound pair 
production. The calculations are performed in the weak electron-phonon coupling approxi­
mation and by neglecting single-particle Green's-function elements that are nondiagonal with 
respect to the band indices. 

1. INTRODUCTION 

THE influence of impurities on the critical tern­
perature Tc of superconductors has heretofore 
been investigated on the basis of the single-band 
model of Bardeen, Cooper, and Schrieffer [1]. 

Abrikosov and Gor'kov [2] have shown with this 
model that a paramagnetic impurity exerts an ap­
preciable influence on the critical temperature, 
whereas a nonmagnetic impurit1' has no such ef­
fect. Markowitz and Kadanoff [3 started from 
Bardeen's anisotropic single-band model and in­
vestigated the influence of a nonmagnetic impurity 
on Tc· They have shown that the scattering of the 
electrons by the impurity smoothes out the 
anisotropy of the energy gap and lowers the criti­
cal temperature. By choosing the anisotropy 
parameter it is possible to reconcile their theory 
with the experimental data [4]. 

In many superconducting metals, overlap of 
two or more energy bands is observed near the 
Fermi energy. In this case, the single-band ap­
proximation is insufficient. We consider in this 
article the influence of a nonmagnetic impurity on 
Tc in a two-band model and show that this influ­
ence is appreciable, owing to the interband scat­
tering of the electrons by the impurity. We use 
for the proof the previously developed method [5] 

of determining the critical temperature of a 
superconductor, and a generalization of the re­
sults of the theory of pure superconductors with 
overlapping energy bands, contained in our 
earlier paper [G] and in that of Suhl, Matthias, and 

Walker [T]. The influence of a nonmagnetic im­
purity on Tc is investigated under the assump­
tion of weak electron-photon coupling and without 
account of Umklapp processes. 

2. ELECTRONIC GREEN'S FUNCTION OF A 
NORMAL METAL WITH NONMAGNETIC 
IMPURITY 

The operator of the interaction between elec­
trans and an impurities randomly situated at the 
points rj is of the form 

Hirnp= ~ ~ U (k- k') p (k- k') X (nk n'k') a.ikoan'k'o, (1) 
kk'o 
nn' 

where 

X(nkn'k') = ~ Unk*(r)un'k'(r)dr, 
v, 

~ ikr. 
p(r)=-"..le 1; (2) 

u ( k) is the Fourier transform of the impurity 
potential, Unk ( r) the modulating factors of the 
Bloch functions, V the volume of the system, and 
V0 the unit-cell volume. The summation over the 
band indices is confined here and below to two 
values, in accordance with the choice of the two­
band model. 

We introduce the electronic temperature 
Green's function [a] 

G(nk n'k'l't'- 't'1 ) = (Tank('t')a,tR.,('t'') U (~) )/(U (~)>, 

II 

U(~) = Texp (- ~ Hirnp{'t')d't' ). (3) 
0 

In the simplest approximation for the mass oper-

536 
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a tor M ( nkn'k'i rl ) of this function, after averag­
ing over the impurity positions, we have 

M(nkn'k'JQ) = 6kk'; ~ Ju(k- k1) J2Gn,O(k1 JQ) 

ntkt 

X x(nkntkt}x*(n'k'ntkt), 

where c is the impurity concentration; 

1 
GnO(kjQ)= En(k)-iQ 

En(k) = T n{k)- !!, Q=(2m+1)n 
~ 

T n ( k ) is the energy of the particle in the n-th 
band, and f.J. is the chemical potential of the sys­
tem. The averaged Green's function then takes 
the form 

G{nkn'k'jQ) = 6kk'Gnn•(kjQ); 

GH(kiQ) = [Ez(k) -M22(kiQ)- iQ][A(kiQ)]-1, 

Gz2(kiQ) = [Et(k) -Mu(kiQ)- iQ][A(kiQ)]-1, 

Gtz(kJ Q) = M12(kJ Q)[A (kl Q) ]-1; 

A (kJ Q) = (El{k)- iQ- M11 (kl Q)) (Ez(k) 

(4) 

- iQ- Mzz(kl Q)) - M12 (k I Q)Mzt (k I Q). (5) 

In the case of overlapping energy bands, the 
Fermi surface consists of cavities corresponding 
to different bands. We assume approximately that 
in our case the two cavities are nearly spherical 
in shape and are characterized by two different 
Fermi radii kf and k[, determined from the 
conditions 

Et(ktF) = 0, 

We assume here that 

Ez(ktF) ~ 1tm1 I mz, 

(6) 

(7) 

where mt, m 2 are the effective masses of the 
first and second bands near the Fermi level. We 
take the first band broader than the second and 
m2 >fit· 

It is easy to see that under assumption (7) the 
function G11 is most significant near the first 
cavity of the Fermi surface, and G22 - near the 
second. The nondiagonal elements Gnm are in­
significant in this case. In these vicinities, the 
diagonal elements of the Green's function can be 
represented as 

11" = 1 + n I 2•n I Q I, 1 I •n = 1 I 'tnt+ 1 I •nz; (8') 

where Sm is the surface of the m-th cavity. The 
quantities T nm are the relaxation times for 
scattering by the impurity. When n = m the elec­
tron remains on the initial cavity of the Fermi 
surface upon scattering, and when n ~ m the 
electron jumps over from one cavity to the other. 
It is precisely these latter processes which pro­
duce the change in the critical temperature of the 
superconductor. 

To conclude this section we note that approxi­
mation (8) for the Green's function is based on 
the assumption that the inequality 

(9) 

is satisfied. The relaxation times T nm (8') depend, 
generally speaking, on the orientation of the vector 
k/[. We shall assume henceforth, along with condi­
tion (9), that the relaxation times do not depend on 
the orientations of the vectors kK. 

3. FUNDAMENTAL EQUATIONS 

The critical temperature of a superconductor 
is defined as the temperature at which the super­
conducting phase is created and is the eigenvalue 
of the equation for the bound state of a pair of 
electrons or holes with zero binding energy. [S] 

To obtain this equation we start from Dyson's 
equation for the two-particle Green's function of 
a system described by a Frohlich Hamiltonian 
supplemented by the impurity interaction (1) (the 
Coulomb interaction is not taken into account 
explicitly): 

G(xa y~; u6 zv) = G"~(xu) G~v(yz)- Gav(xz) G~o(yu) 

+ )1, ~ ... ~ Gc.w,(xxi)GBcr,(YXz):E(xtO"tXza2;xsasXt,Ot,) 
a, ... a .. 

All the electron lines of the reduced quantities 
contain impurity proper-energy inclusions. 

(10) 

We average in this equation over the impurity 
positions by introducing a new function [2] · 

K(xy; uz) = G(xu)G(yz). 

Then the averaged equation (10) takes the form 

G (xa y[3; uo zv) = K (xy; uz) 6"cr6Jlv- K (xy; zu)o"v0B6 

+ ~ ~ ... ) K(xy; x1xz)C:(x1ax2~; xsax,a') 
crcr' 

X G ( x3a x,a'; uo zv) d"x1 ••• d'x4, 

(11) 

(12) 

where the new compact mass operator ...... , unlike 
the operator 2.::, contains impurity lines besides 
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the phonon lines. All the electron lines in this 
equation are in correspondence with function (8). 

Since the aforementioned bound state cannot be 
contained in the inhomogeneous term of (12), it 
must be left out and then the equation of interest 
to us takes the form 

F(xa, y~) = ~ ~ ... ~ K(xy; x1xz) 8 (xta Xz~; X3<1 X4<1') 
a a' 

X F(x3<1, X4<1')d4xt ... d4x~.. (13) 

Abrikosov and Gor'kov [2] obtained for the 
function K the equation 

K(xy; x1x2) = G(xxt)G{yx2)+ ~ ... ~ G(xx3)G(yx~.) 

(14) 

The simplest approximations for the functions ,::. 
and I, which we shall use from now on, are: 

(15) 

In writing out (18) we assume the property 
Unk*(r) = Un-k(r). 

From (14) we obtain 

Kn1n2n3n4 {kk'l QQ')=~6gg• 6kk' Gn,n,(kl Q) Gn,n,(- kl- Q) 

+ V ~ lu(k-kt) 12 ~Gn,m,(kiQ)Gn,m,(-kl- Q) 
h1 m1m2 

m3m4 

X X ( m1km3kt) X ( m2- km4- kt) Km,m.n 3n4 (ktk' I QQ'). 

(19) 

The system (18) and (19) can be so simplified 
that the problem of determining the critical tem­
perature of a superconductor in the process of an 
impurity reduces to a solution of the system of 
equations (see (A.17) and (A.18) of the Appendix) 

/r(Q) = 4
1
P. ~ ~ Lrm(QQ')NmAm(Q')/m(Q'), 
1-' Q' m 

(20) 

Lrm(QQ') = 4nVrm(Q- Q') 

~ 1i , + Lrz-.. An(Q)Lnm{QQ ). 
n 't'rn 

(21) 

A solution of (21) is obviously 

(16) Lrm(QQ') = Llrm(QQ') I ~{Q); (22) 
q 

where B ( x) is the Green's function of the free 
phonons. 

In our approximation we have (a = -{3) 

F(xy) = ~ d4x1 d4x2K(xy; XtX2)B(x1- x2)F(xtX2), 

K (:n1; x1x2) = G (xx1) G (yx2) + ~ ~ G (xx3) G (yx4) 

X -v ~ I u ( q) 12 e-iq(x,-x,) K ( X3X4; XtX2) d4x3 d4x,. ( 17) 
q 

Let us expand F and K in terms of the Bloch 
functions ¢nk· The nk-representations for these 
functions are denoted by 

F(n,kt, n2k2l-r) = 6h,, -h,Fn,n,{ktl-r), 

K (ntk1n2k2n3k3n4k4l 't'x - 't't, l'y- 't'z, 't't - 't'2). 

The last function is proportional to 6k1+k2,kg+k4• 

On the basis of this we obtain 

1 
F nn'{kl Q) = - 2- ~ ~ B(kt- k2l Q'- Q") 

~ V ll'!l" n, ... n, 
k,k, 

X F n,n, (k2l Q"), 

where we use the notation 

Knn'n 1n, (kktl QQ') 

= K(nkn'- kn1k1n2- kdQt- Q, Q- Q'). 

(18) 

Atm(QQ') = 4n(Vtm(Q- Q')-(1- A2(Q)1i I 2-r22) 

+ V2m(Q-Q')Az(Q)Iil2-rt2); 

Ll2m{QQ') = 4:re{V2m{Q- Q') (1- At(~~)1il2-ru) 

+ Vtm(Q- Q')At(Q)Ii I 2-r21), 

Ll (Q) = [ ( 1 - At(Q)Ii I 2-ru) {1 - A2 (Q) 1i I 2-r22] 

- At(Q)A2 (Q)·Ii2 I 4-rzt-rtz. (23) 

Substituting this solution in (20) and introducing 
new functions Xi ( Q) defined by the formulas 

x;(Q) = ~ ~[Vii(Q- Q')Ntft(Q')At(Q') 
t' !l' 

+ V;z(Q- Q')Nz/2(Q')Az(Q')], (24) 

we obtain 

Xi(Q) = i ~ I~'I[Vi!(Q- Q')Ntxt{Q') 

+ V;z(Q- Q')Nzxz(Q')] +-;- ~, ~~~'I 
(Xt (Q')- xz(Q')) (jV;z(Q- Q')- Vii(Q- Q')) 

X 1 + l'tz/l'2t + 2l't21 Q' I /li (~5) 
where j = ( N2/N1 )( T12/T21 ). 

The system (25) is solved under the assumption 
that Vrn are small (weak coupling) and f3c 
= (kTc )- 1 are large. We make use of the pro­
cedure developed in the papers of Bogolyubov [a] 
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and Zubarev and Tserkovnikov LtoJ for separating 
the principal terms that are logarithmic in f3c, 
obtaining 

where Xi= Xi(o), vij = vij(o), o- o, 'Y = ec, 
C is Euler's constant, and 

r dt h[ h~ (1+ 'l'12)t]· (27) 
l= ~ t(i+t2)t 4't12 'l'21 ' 

.. 
lnw;j =- ~ lnyd[(V;i(6- iy) 

0 

+ V;i(- 6- iy) )Ni(Xi(iy + 6) 

+ 'Xi(iy- 6)][4V;iNi'Xi]-t. (28) 

The vanishing of the determinant of the system 
(26) defines the quantity f3c, and determines with 
it the critical temperature. The corresponding 
system of equations for the pure superconductor 
is obtained from (26) by dropping the terms con­
taining I and replacing the frequencies wij with 
the frequencies for the pure superconductor w? .. 

lJ 
The corresponding determinant determines {3~. 
Let us expand the determinant of (26) in powers of 
I and of ln ( wij/ w~.) and retain the linear terms. 
It is easy to see t~at the result is the following 
impurity dependence of f3c= 

ln~=A+B· (29) 
~co ' 

A = Nd { (V22.f- V21 ) ( 1- VuNtsu- VtzNz£12) 
D ( 1 + 'l'tz/-rzi) 

+ (Vtzi- Vu) (VztNtS21 + VzzNzszz -1), (30) 

B = - 1 {V11N1s11 ( 1 - VzzNzszz) + VzzNzS2z ( 1 - V11N1s11) 
D 

+ Vz1N1 VtzNz (s1zszt + sz1S1z)}, (31) 

A=+ Ntl{ Vu + Vz2.i- V21 - V12.f 

Nd+Nz , } - [b0 + (b02 - 4a) f,] 
2NtNz 

X ( 1 + 'l'tz/-rzi) -i (b02- 4a)-'/,, (35) 

where w is some averaged frequency, introduced 
for convenience. 

For spherically symmetrical Fermi -surface 
cavities j is equal to unity. In this case we have 

a±= -1-{ 1 ±[I'!_~- N: (V22Nz- VuNt) 
2 ,'\1 + 1\z 

+ 2N1N2 (V12 + l'21) J (bo2- 4a)-'h}, 
Nt+Nz 

(38) 

where 1/J is the derivative of the logarithm of the 
r function. 

In (34), (37), and (38) it is necessary to take 
the lower sign when a ::::: 0, for otherwise we 
arrive at negative values of ~. When a > 0 it is 
necessary to take the sign leading to a more 
stable superconducting state. Regardless of the 
choice of the sign, the values of a are not nega­
tive and do not exceed unity. This follows from 
the fact that the absolute value of the second term 
of the right side of (36) is always smaller than or 
equal to unity. 

Formula (37) is similar to the Abrikosov and 
Gor'kov formula 

~c ( 1 ~c ) ( 1 ) 
ln ~co = 1jJ 2 + 2n-rs -'ljJ 2- ' 

where Ts is in this case the relaxation time of 
the spin interaction of the electron with the para­
magnetic impurity. 

In the limit of small impurity concentrations 
f3c(1/r12 + 1/r21 ) « 1 we have 

(39) D = VuNt(1- V22Nzszz) + Vz2Nz(1- V11Nt611) 

+ Vtz VwVtNz (szt + s1z) ; (32) Thus, in the limit of low impurity concentration 
we observe a decrease in the critical temperature 

Wij 
Sii = ln--o . 

W;j 
(33) 

In the right side of (29) the principal term is 
A. Retaining in the latter only the terms that 
vanish when Vij - 0, we obtain 

f: = ln 2v~c0hw - bo r ( - 4a )'/,] b _..:._:_ ____ 2 ,1+ 1 b2 , 
n a L o 

(34) 

with increasing concentration. 
Let us consider the second limiting case 

To make this inequality compatible with (9) we 
must satisfy the condition 

mz~c(1 1)-~~c~- -- -+- ;;;>1. 
mt 2 't'12 't'21 

In the limiting case (41), Eq. (37) with a± ""- 1 

(40) 

(41) 
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takes the form 

n~c'V (~+~) = [li~h(~+~)]!/(1-a±)' 
:rt T12 T21 :rt T12 T21 

(42) 

whereas for a± = 1 we have 

-- - -+- -In -- -+- (43) 1 ( 2:rt ) 2( 1 1 )-2 [ li~h ( 1 1 )] 
6 fi~c T12 't21 - :rt T12 T21 . 

According to (43), (3- «> when 

fi~c0 (1 IT12 + 1 ITzt)-+ 1, 

that is, at some critical impurity concentration. 
When a± ~ 1, in accordance with (42), f3c can 
tend to infinity only if the impurity concentration 
increases without limit. This limiting case, ob­
viously cannot be regarded by us. Thus, when 
a± = 1 there is no critical impurity concentration 
in this theory. 

The results can be used when the d- and s­
bands of transition metals overlap, and also when 
the s- and p-bands of metals of the principal 
groups of the periodic system overlap. For 
transitions metals, the d-band (n = 2) is much 
narrower than the s-band ( n = 1 ), and inequality 
N2 » N1 holds. Since j is equal to unity, we also 
have the inequality 

1 I T12 ~ 1 I T21, 

making it possible to simplify the obtained formu­
las somewhat. Thus for example, (39) takes the 
form 

6Tc :rt fi~coVF 
-- ~ ---a±___ l12 = VFT!2· 

Tc 8 l12 ' 
(44) 

When VF/Tco ~ 2 x 107 cm/sec-deg we have 

6Tc -6 ·10-5 a± [em] 

T"' l12 

The experimentally measured quantity is the 
transport mean free path l = VFTtr• and therefore 

6Tc,..,., 6·10-5 -a±(Ttr/Tt2) [em] 
Tc l 

Since u1k can be regarded as constant for the 
broad conduction band ( s ), whereas for_ the _ 
narrow ( d ) band u2k varies rapidly near the 
ionic core, the quantity x ( 1k, 2k') which is con­
tained in the definition of i 12 is apparently small. 
This smallness is contained in quadratic fashion 
in the definition of the interband relaxation time. 
If we assume that the product of the two unknown 
parameters a and Ttrl T12 is of the order of 
10-2, then we obtain at low impurity concentra-
tions 

6Tc Tel,..,., -10-6cm. 
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Bogolyubov, D. N. Zubarev, and S. V. Tyablikov 

for interest in the work and a discussion of the 
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APPENDIX 

We seek the solution of (19) in the form 

Kn,n2n,n4 (kk' I QQ') 

= ~~!J!J' ~. Gn,r1 (kl Q) Gn,r,( -ki-Q)::Jer,r,n,n,(kk'l Q), 
T1T2 

(A.1) 

where the new function JC satisfies the equation 

::;e,,,,nzn, (kk'l o) = ~kk'<'>,,n,<'>r,n, + ; ~I u(k- k1) 12 
k, 

X ~ :x;(rtkmtki):x;(r:~- kmz- kt)Gm,~,(kd Q) 
m,n; 
1112 

(A.2) 

On the basis of the properties of the functions G, 
given in Sec. 2, we can easily see that the product 
Gm1z/im2Z2 is small when all the band indices 
coincide. Therefore, accurate to terms 
lim2/2TijtLm 1 « 1 we can simplify (18) and (A.2) 
by retaining only the indicated essential terms. 
We then obtain 

1 
Fnn•(kl Q) ~ Gnn(kl Q) Gn'n' (-ki-Q) ~V 

X ~ ~ B(kt-k21Q-Q') 

X .1't' nn'n,n, (kk1 I Q):x; (nk1 nsk2) :x; (n2- k1 n;,- ki) 

XFn,n 4 (k21Q'), (A.3) 

.1't' nn'n,n, (kkd Q) ~ ~kk 1 <'>nn,6n'n2 + ___:__ ~ I U (k- k2) 12 

v k, 

X~ :x;(nkmkz)x*(n'kmkz)Gmm(k21Q) 
m 

(A.4) 

It is convenient to make in (A.3) the substitu­
tion 

We then obtain for the function fnn' 

fnn•(kiQ)~ ~ ~ ~ B(kt-k21Q-Q') 
~ N ;:," ntnzna 

ktk3 

X .1't' nn'n,n, (kkd Q) :X: (ntk! nskz):x:* (nzk nskz) 

X Gn,n, (k2l Q') Gn,n, (- kzl- Q')fn 3n3 (ksl Q'). (A.6) 

From this equation it follows that the off-diagonal 
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elements of the function fnn' ( n ;r n') depend 
linearly on the diagonal elements (n = n') and by 
the same token the critical temperature T c of 
the superconductor (and with it also {3 = f3c) is 
determined from the system of two equations (A.6) 
for the function fn ( k I &1 ) • 

Using the property 

3lnnn 1n,(kk'IQ) = 6n,n,3Cnn n1n,(kk'IQ), (A.7) 

which follows from (A.4) we obtain for the func­
tions fnn ( k I Q ) the system of equations ( {3 = f3c ) : 

fnn(kiQ)= ~~ '~ ~B(kt-kziQ-Q')3Cnnrr(kkdQ) 
f3 g' rm · k1k2 

(A.14) 

We introduce the notation 

{2n) 3Yrm(Q-Q')Nm= ~ ~~~:~ B(krF-gmFIQ-Q') 
sm 

X l:x(rkt mk2) I2Gmm(k21 Q') Gmm(-k21-Q')/mm(kziQ'). 2n2Lrm(QQ')Nm =I~ I ~~:I Lrm(krFgmFI QQ'), (A.15) 

(A.8) Bm 

We introduce, finally, a new function where 

Lrm(kkd QQ') = ~ 3trrnn (kk2l Q) l:x(nk2 mkt) 12 (A.16) 
1!.1<, 

XB(k2 - kdQ- Q'). 

We then obtain the system of equations 

(A.9) is the state density on the m-th cavity of the 
Fermi surface. Just as for the relaxation times. 
Tij• we assume here that the quantities Vrm• 
Lrm. and frr are independent of the orientation 
of the vector k¥, the end point of which lies on the 
r-th cavity of the Fermi surface. Whenever this 

X Gmm(-kd-Q')/mm(ktiQ'), 

Lrm(kk' I QQ') = B(k- k' I ~;J- Q') I :x(rk mk') 12 

+__:_ ~ lu(k- p) j2 l:x(rknp) I2Gnn(PIQ) v . 
pn 

X Gnn ( -p 1-Q)Lnm(pk' I QQ'). 

IA.10) 

(A.ll) 

We solve it by using the rapid decrease of the 
product of two Green's functions with increasing 
distance from the Fermi surface, so that the 
functions f and L need be considered only on the 
Fermi surface 

k F I 1 ~ ~ ll 'r dSm L k F F I rv 
frr( r Q) ~ R LJ LJ (Z fi) 3,J -1 \IE I rm( rPm Q,~) 

t-' Q' m :rt - sm m 

X Am(Q')/mm(PmFIQ'), (A.12) 

max 
Em 

Am(Q)=~ ~ Gmm(kiQ)Gmm(-ki-Q)dEm 
ll 

1 
IQI1'Jm(Q). 

Furthermore 

(A.13) 

assumption does not hold, the theory becomes 
essentially anisotropic. 

Thus, the isotropic theory is based on the 
following equations Ur ( Q ) = frr ( krrF I Q ) ) : 

/r(Q) ~ 41__ ~ ~Lrm(QQ')NmAm(Q')/m(Q'), (A.17) 
{3 Q' m 

Lrm(QQ') = 4nVrm(Q- Q') + ~~Lnm(QQ'). (A.18) 
n 2'trn 
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