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Unrestricted cumulation is observed which is not related to the centripetal motion of a gas 
but is caused by the special periodic structure of the matter in which the shock wave moves. 
The motion of such a wave is a periodic self-similar one. Some properties of this new type 
of self-similarity are described. 

INTRODUCTION 

THE unbounded cumulation of energy is as a rule 
associated with centripetal motion. for example in 
spherically converging shock waves, in the 
collapse of bubbles in a liquid, and also in con
verging shock waves of a field. The question 
naturally arises as to whether this geometric cir
cum stance (convergence to an axis or to a point) is 
a necessary condition for unbounded cumulation. 
By considering this problem, it was possible to 
construct an example of plane shock-wave motion 
with spontaneous, unbounded growth of pressure 
on its front; that is, the answer to the problem was 
shown to be negative. 1 l 

Keeping in mind that, under strong shock com
pression, any material (cold prior to compression) 
behaves as an ideal gas, we shall consider the 
motion of the wave just in ideal gases. 

Let the system consist of alternating layers of 
light and heavy gases, and let it be set in motion 
by a piston so that a shock wave whose front is 
parallel to the layer travels in it. Further, let the 
thickness of each successive heavy layer be less 
than the foregoing, and let the same be true for 
the light layers. As the wave moves in such a 
system, one can expect an increase in the shock 
wave on the basis of the following qualitative con
sideration. 

If the density of the light lay_E~rs is very small, 
then in the motion they will be strongly com
pressed between the layers of heavy material and 
all of the motion will become similar to a series 
of collisions of the heavy layers through elastic 
layers. If in this case the succeeding layer is 

1>we note that the previously investigated singularity ['] 
arising upon emergence of a shock wave to the free surface of 
the atmosphere is not cumulation. In this case, only the veloc
ity of the wave and the temperature behind it increase without 
limit; the pressure and the energy density do not cumulate, but 
rather tend to zero. 

lighter than the preceding one, while the losses 
in energy in the collisions are not very great, 
then it can recoil with great velocity. The same 
circumstance is repeated for the next shock and 
so forth. 

By establishing a definite ratio of thickness of 
neighboring heavy layers (and the same for light 
layers), we get the layered system shown in Fig. 
1. The ratios of the thicknesses of all light layers 
are identical: 

bd Xi= e1 = const. 

The same holds for the heavy layers: 

8h = const. 

The boundary of the system is located at 
x = 0, the number of layers in it is infinitely 
large. The wave moves from right to left. The 
real picture of its motion is much more compli
catedtb,an is described qualitatively, and there
fore the question of its unbounded increase is 
still unclear and must be investigated separately. 

Our system is self-sim.i.lar: when its dimen
tions change by a factor.( 1 - EZ) ( 1 - Eh ), the 
system coincides with the original system. 

It is clear that such systems can be constructed 
not only from pairs of layers but also from 
triplets, quadruplets, and so forth, and also from 
a continuously repeating profile density, for ex-
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FIG. 1. Self-similar layered system: 1 =light layer, h = 
heavy layer. 
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ample, of the form 

p=A+Bsinlnx 

or of the more general form 

P =!zlt(A + B sin ln x). 

When such a system is continuously increased and 
its density scale changed accordingly the distribu
tion of p ( x) will periodically repeat the initial 
distribution. 

1. QUALITATIVE PICTURE OF THE MOTION 

Let us first consider the simplest picture of 
motion of a plane wave in a periodic layered system 
with constant absolute thicknesses of light and 
solid layers. If the piston producing the motion 
moves for a sufficiently long time with unchanged 
velocity, then a periodic change of pressure is 
established in the forward moving wave. The 
character of the motion that is established is 
shown in Fig. 2 (only the first wave is shown). 
The pressure p of the front changes jumpwise 
upon passage from layer to layer, and also in 
places where the secondary waves-the results of 
reflections from the boundaries of the layers
catch up with the first front. 

In a self-similar system having a limit, that 
is, of the type shown in Fig. 1, the periodicity of 
the pressure on the front can be accompanied by 
its general increase by a constant factor at each 
pair of layers. Therefore, for corresponding 
values of x, for example, on: the right sides of 
the heavy layers, the pressure at the front will 
have the form 

p = a/xn. 

For other values of x (for example, the centers 
of the light layers) the law will be the same but the 

p 

'-----------'-11 
FIG. 2. Steady motion of a shock wave in a simple layered 

system; p =pressure on the front of the first wave. 

t 

FIG. 3. Motion of a wave in a self-similar layered system. 

value of a will be different. The character of 
such a system is shown in Fig. 3. 

Evidently the dependence of the pressure on x 
for the self-similar motion under consideration 
can be conveniently represented in logarithmic 
coordinates, where the periodic system with con
tinuously decreasing layers will have a constant 
pitch, while the dependence of ln p on ln x is 
shown by a periodic broken line of the type shown 
in Fig. 4. 

The self-similar motions that have been de
scribed are much more complicated than the cases 
of motion of the wave in a homogeneous medium 
considered earlier. In the latter the solution re
duced to finding profiles of pressure density and 
velocity (their distribution in x) at a single instant 
of time. The distributions at all other instants 
were similar and were obtained by means of a 
scale transformation. Thus the problem was re
duced to a single independent variable, that is, to 
ordinary differential equations. In our case, for 
the description of the entire solution one needs not 
the single profile p ( x ) [and also p ( x ) and the 
velocity u ( x)], but all the profiles for a single 
period, i.e., it is necessary to know p as a func
tion of two variables over the entire section of 
plane ( x, t), for example, that shown in Fig. 3 
by the horizontal hatching. Therefore, the new 
problems do not reduce to a single argument and 
to ordinary differential equations and solution of 
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FIG. 4. Pressure at the front of a periodic self-similar wave. 
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partial differential equations becomes necessary. 
One method of solution can be the numerical 

calculation of the motion of the waves through a 
sufficiently large number of layers, in the process 
of which self-similarity is produced. Evidence of 
this will be the appearance of repeated profiles in 
the dependence of ln p on ln x. It is not necessary 
to consider the subsequent motion of the wave; it 
can be constructed from the already obtained 
profiles of p, p, and u by means of the index n 
that has been evaluated and by virtue of the fact 
of self-similarity (in our case, periodicity). 

We note that in principle the appearance of a 
solution with a period corresponding not to one 
period of the system but to two, three, and so 
forth has not been excluded. Some of these can be 
unstable, that is, they can be destroyed by small 
perturbations which do not destroy the symmetry 
of the motion (planarity of the wave). 

The result of the numerical calculation of a 
single specific case is given in the next section. 
The chief purpose of the calculation was to deter
mine the exponent of cumulation n in the law of 
p ~ x-n or E ~ x-n, where E is the energy vol
ume density on the wave front. In our case 
E == p/ p ( y - 1 ) where y is the ratio of specific 
heats. In a system consisting of alternating layers, 
the p are identical at corresponding points, that 
is, E and p increase according to the same 
power law on the front. 

It is not difficult to establish the limit for pos
sible values of n. If the energy were transferred 
from layer to layer as a whole (not remaining in 
the layers either in the form of kinetic energy or 
in the form of heat), then its density would be in
versely proportional to the thickness of the layer 
or to the distance from the edge x, i.e., we would 
have E ~ x- 1. Thus the upper limit for the ex
ponent of cumulation of a plane wave is n = 1. For 
a plane wave in a homogeneous gas, there is in 
general no cumulation, that is, n = 0. 

2. RESULT OF NUMERICAL CALCULATION 

Starting from qualitative notions concerning 
the character of the motion, it can be expected 
that the cumulation will contribute to a large dif
ference in the densities of the heavy and light 
layers; therefore, the calculation was made for a 
system with a very large density ratio, equal to 
25. The relative thicknesses of the layers were 
chosen to be Eh = 0 .1 and q = 0 .2. Numerical 
calculation of the motion of the plane wave showed 
that as it approaches the boundary the wave is 

amplified, that is, an unrestricted cumulation 
actually takes place; here the exponent is n = 0.23. 
This is the first example of unrestricted increase 
in pressure taking place in one-dimensional mo
tion, that is, without symmetric convergence of the 
wave to a center or an axis. 

The exponent n is determined from the slope 
of the broken line which is the plot of the calcu
lated dependence of ln p on ln x. This slope is 
small (the cumulation is weak) but significantly 
exceeds the various irregularities connected with 
the crudeness of the calculation and with the de
parture of the actual regime from the asymptotic 
condition. 

3. TWO POSSIBLE MODES OF MOTION 

We have proved the fact of amplification of a 
wave in a system with a periodic structure only 
for ideal gases (cold before the condensation) or 
for a sufficiently strong wave in real condensed 
substances, which behave in the strong wave like 
ideal gases. It is easy to see that the mode can be 
quite different for a weak initial wave. In fact, if 
the system consists of layers which have a finite 
sound velocity, i.e., which can conduct weak shock 
waves (acoustic), then the first wave in such a 
system, if it is weak, will become weaker by a 
finite factor in each pair of layers. The secondary 
fronts, moving at this time with the same velocity 
(sound velocity) will not overtake it, i.e., the first 
wave will be unrestrictedly damped. 

Thus, for a layered system consisting of con
densed materials, there is a critical strength of 
the initial wave. If the wave is weaker than critical, 
then it is unrestrictedly damped; if it is stronger, 
then it increases without restriction. The pres
ence of a critical strength of the initial wave 
clearly distinguishes the layered systems from 
the homogeneous ones, in which any weak converg
ing wave finally leads to a mode of unrestricted 
amplification. 

In conclusion, I wish to thank L. A. Bunatyan, 
A. A. Bunatyan, K. K. Krupnikov and V. F. 
Kuropatenko who materially aided the completion 
of the present research. 
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