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The angular distribution of resonance charge exchange for He+ ions in helium is calculated 
in the quasiclassical approximation, which permits one to take into account the difference 
in the trajectories of the relative motion of the nuclei for symmetric and antisymmetric 
states of the quasimolecule. The conditions of applicability of the formulas employed are 
analyzed. The results are compared with the experiments and with rough calculations per
formed by Everhart [6]. Possible ways of refinement of the theory are discussed. 

1. INTRODUCTION, INITIAL APPROXIMATION 

THE dependence of the probability of resonance 
charge exchange w on the scattering angle 80 and 
on the energy of the incoming ion E0 have recently 
been measured in detail 1> (see, for example, [i], 

where there are references to earlier papers). It 
was observed that w is an oscillating function of 
E0 at fixed values of e0 and an oscillating function 
of e0 at fixed E0• The adiabatic theory of reso
nance charge exchange, developed within the frame
work of the parametric method (classical approxi
mation for nuclei) [2- 4], also predicts the presence 
of such oscillations. In spite of this theory, how
ever, the experimentally observed maxima and 
minima of the probability do not reach 1 and 0, 
respectively. 

In addition, attempts to calculate the dependence 
of w on E0 and e0 [s,s] meet with difficulties of 
fundamental nature, for in the case of motion in 
fields we have 

( Z is the nuclear charge, E± ( R) the principal 
symmetrical and antisymmetrical electronic terms 
of the quasimolecule, and R the distance between 
nuclei). The same values of () correspond to dif
ferent impact parameters p, which we shall denote 
by P±(E, 8). This difficulty arises in all collision
theory problems connected with the calculation of 
the angular distribution in the classical approxima
tion. However, in the case of resonance charge ex
change, which is in fact only the result of interfer
ence between molecular states and is not connected 

l)Both quantities are taken in the laboratory frame; the 
same quantities in the c.m.s. will be denoted by E and (). 

with the electronic transitions between the states, 
this difficulty can be overcome (see below). This 
can be done also for inelastic processes character
ized by a small transition region, for example, for 
transitions occurring during crossing (or pseudo
crossing) of molecular terms. 

Recently Smith undertook[7- 9J the study of 
charge exchange on the basis of the quantum
mechanical formulas of Massey and Smith [to]: 

q(8) = 1/41/+(8) - j-(8) 12, 

q!(8) = 1/4if+(8) + j-(8) 12• 

(1) 

(2) 

In (1) and (2), q 1 and q are respectively the dif
ferential cross sections for elastic scattering and 
resonance charge exchange, while t± ( e) are the 
amplitudes of potential scattering in the fields 2> 
U±(R): 

1 00 

j±(8) =-~ {exp (2i1]z±)- 1](2l + 1)Pz(cos 8), (3) 
2Mv1= 0 

where M is the reduced mass, v the relative ve
locity at infinity, and 7Jf the Z-th scattering phase 
shifts. 

Formula (1) gives the correct values of the total 
charge-exchange cross section u for 3> v « v0 (v0 

is the velocity of the "active" electron on the Bohr 
orbit ) . However, even if this condition is satisfied, 
the values obtained for q ( e ) and q 1 ( e ) are in cor
rect when p ( E, e) is small, for it is necessary to 
take into account in this case all the states of the 
quasimolecule, which have the same energy when 

2 lUnless otherwise stipulated, we are using atomic units 
throughout. 

3 )we confine ourselves in this article to the indicated 
velocity interval. 
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R = 0 (see, for example [tt], Ch. 18). This effect, 
called rotational coupling, is of no significance, and 
the electronic wave function varies adiabatically if 

(4) 

where the left side is equal in order of magnitude 
to the angular velocity of the quasimolecule, while 
the right side is equal to the splitting of the terms 
that are degenerate when R = 0, one of which is 
c( R). 

The cited articles by Smith present calculations 
for the charge exchange 

H++ H-+H+ H+ (5) 

in a broad interval of energies and scattering 
angles. Smith also took into account the effect of 
rotation, using for this purpose the results of Bates 
and Williams [12], and obtained good agreement with 
experiment for e0 = 3 o (there are no experimental 
data as yet for other angles). 

In this article we consider the resonance pro
cess 

He+ + He-+ He + He+, (6) 

which is more interesting than (5) in many re
spects, and for which there are experimental data 
in a wide range of E and e. Smith did not analyze 
with sufficient accuracy the conditions for further 
approximations, we shall discuss this in greater 
detail in the following section. This is all the 
more important because the results obtained can 
be developed in appreciable detail in different 
directions. 

2. SEMICLASSICAL APPROXIMATION 

In view of the large mass of the atoms, their 
motion in a sufficiently broad region is quasiclas
sical, that is, the phases satisfy the following for
mula (the Langer-Jeffries approximation): 

'( ( p2 )'" l -~ 1-R2 dR, (7) 
p ~ 

In the quasiclassical region of E and e, the 
series in (3) converge very poorly: it is necessary 
to include several hundred or even thousands of 
partial waves. We can therefore replace the sum
mation in (3) by integration, use for Pz( cos e) 

the asymptotic expressions as l- oo, and calcu
late the resultant integrals by the stationary phase 
method. This procedure, described in detail in [14 ] 

(Sec. 126), leads to the expression 

j±(8) =Az±exp{i[21]z±- (Z±+ 1/2)8]} 

(10) 

where 

Az± = ___!__ f ~I d21]z± ~-il''• '--- [q±(8)]''• (ll) 
Mvl sm 8 dl±2 _ 

is the square root of the classical differential 
cross section for scattering by the potential U±(R), 
and Z± ( E, e) is the root of the equation 

d1]z± 
2 dl± = 8. 

(12) 

It is useful to note that the quantity s+ ( S-) con
tained in (10) has a simple physical meaning: it is 
equal to the difference between the classical action 
(calculated for the entire scattering process) for 
a particle deflected in the field U + ( U _) through an 
angle e, and the action of a particle moving uni
formly in a straight line. Expression (10) is valid 
for a monotonic dependence of U± on R, under 
the condition 

(13) 

On the other hand, if the potential has a minimum 
(like U+ for the process (5) and U- for (6)), then 
there exists an angle of extremal deflection ec 
= 2 ( dTJz I dl )lc, where lc± is the root of the equa
tion d2TJy I dli = 0. When e ;:;. ec formula (1 0) can
not be employed, owing to the so called "rainbow 
effect" [ 15 •9]. 

In helium, the rainbow effect can occur for scat
tering in the field U _ ( R ) . Therefore the condi
tions for the applicability of formula (10) turn out 
to be not (13) but 

(14) 

where 

p = (l + 1/2) I Mv 

We now write the initial formula for the probability 
(8) of resonance charge exchange 

is the classical impact parameter and R± are the 
largest roots of the corresponding integrands. 
Formula (7) is applicable at any rate if (see [ 13 ], 

Ch. 7) 

1]1~ 1. (9) 

w(E,8) =ql(q+qi), 

or on the basis of (10) 

w = 1!2[1- G(E, 8) cos (S-- S+) ], 

G(E, 8) = 2(q+q-)'f, I (q+ + q-) < 1. 

(15) 

(16) 

(17) 
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Formulas (16) and (17) show that one of the causes 
of the smoothing of the interference extrema is the 
difference between the classical cross sections q + 
and q. 

Assume further that 

U±(P±) IE~ 1. (18) 

Then formula (7) takes the simpler form: 
00 

± _ -~ (" U±(R)RdR _ -~F ( ) (!9) 
'Yiz - v J (Rz- p2) ''•- v ± p 

p 

(see, for example, C14J, Sec. 123). Although we 
imposed no limitations on (} in the derivation of 
(19), this formula is actually applicable only when 
(} « 1, as can be readily seen from (18) (see also 
Problem 1 of Sec. 20 in the book by Landau and 
Lifshitz [ 16J). 

If conditions (4), (9), (14), and (18) are satisfied, 
then the determination of w( E, (}) reduces on the 
basis of (10)-(12) and (19) to the following opera
tions: from the equation 

I dF;;,(p) I = E6 

we obtain P± ( E (}); we then calculate 

and 

G(E6) = 2 [P+P-(d2F+fdp+2) (d2F_jdp_2)]'f•' 
P+d2F_jdp_2 + p:...d2F+fdp+2 

s-- s+ = !_ ~(E6) 
v 

(20) 

(21) 

We substitute (21) and (22) in (16) and obtain the 
charge-exchange probability as a function of E and 
e. We note that when (} « 1 the quantities P±• G, 
and {3 are functions of the product Ee, and not of 
E or (} separately. 

3. CHARGE EXCHANGE IN HELIUM 

The numerical calculation procedure by means 
of the formulas of the preceding section is analo
gous in many essential features to that described 
by EverhartC6J, who considered the process (6) 
within the framework of the parametric method. 
We shall discuss in what follows principally those 
aspects which are not treated in [GJ. Like Ever
hart, we choose for e: + ( R) the "diabatic" curve 
calculated by Lichten [T]. This term, which in the 
molecular-orbital approximation corresponds to 
the configuration (lug) ( luu )2 of the He; molecule 
determines, according to Lichten, the process of 

G 
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FIG. 1. 'Smoothing' function G(E080). 

resonance charge exchange of He+ in He for not 
too small v. When R < 2, it crosses an infinite 
number of terms and then the boundary of the con
tinuous spectrum of the He; quasimolecule. 

However, the presence of the interference pic
ture shows that the interaction with these terms 
and with the continuous spectrum is small. There
fore, for not too small v, we can calculate the 
process (6) by means of the formulas of Sec. 2, 
replacing, however, the adiabatic term ~g by 
the corresponding diabatic curve. 

In view of the fact that the function G ( E (} ) 
varies very slowly (Fig. 1), the extrema of the 
w( E, (}) are determined, in accordance with (16), 
by the condition 

s--s+ = nk, (23) 

the even k correspond to the minima and the odd 
to the maxima. 

Allowance for the coupling with the other states 
leads (see [9]) in lieu of (16) to the following for
mula for the total charge -exchange probability: 

w = 1/ 2 [1 - G(E, 6)A (E, 6) cos (S-- S+ + <!> (E, 6)) ], 
(24) 

A=' [1-P(1 + lf+(6) 12 / IJ-(6) 12)1'1•, (25) 

where P is the probability of all the inelastic pro
cesses except ionization, and <I> is the correction 
to the phase of f- ( (} ) . 

In the case of process (5), which was considered 
by Smith [SJ, only the coupling between the states 
2pu and 2p7r is essential (rotational coupling). Cal
culations show that A(E, (}) is close to unity, i.e., 
the rotational coupling changes the value of the ex
trema little. However, <I> ( E, (}) turned out to be 
close to 1r for Ee > 2 keV/deg, when P+ « 1, with 
<I> ~ 2 at the lowest value Ee = 0. 75 keV -deg. 

Since we do not calculate P and <I> in the pres
ent paper, we shall attempt to take account of the 
rotation effect indirectly. To this end we put A = 1 
( P = 0) and <I>= 1r. The first assumption is natural, 
while the second calls for some justification. We 
therefore turn to formula (4), putting in it, for rough 
estimates, a= 1 (an exact determination of a is a 
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FIG. 2. Effective impact parameters P± (E0 e 0). 

laborious process). Using Fig. 2, we conclude that 
in the greater part of the experimentally investi
gated region of E and e ( 0.5° < e0 < 5° and 0.4 keV 
< E0 < 25 keV ), a condition converse to (4) is satis
fied. Since rotation of the quasimolecule is essen
tially a geometrical effect, it is natural to expect 
that the phase <I> is close to 1T for the indicated 
values of E and e. In a smaller albeit significant 
part of the investigated range of E and e, the in
equality (4) is satisfied, i.e., the assumption that 
<I>= rr is not justified. It can be thought, however, 
that at these values of E and e the inequality 
lrr- <I> I > <I> is satisfied, as for process (5). 

Putting4 l <I> = rr in (2 4), we obtain in place of 
(23) the following extremum condition: 

s- - s+ = :n ( k - 1). (26) 

For process (5) s- - S+ < 0, while for charge ex
change (6) s- - s+ > 0. Therefore, in the former 
case the effect of rotation is to shift the extrema 
towards smaller values of E and e, and in the latter 
towards larger ones. 

Figure 3 shows the theoretical and experimen
tal [18] curves that determine the maxima of the 
charge-exchange probability for k = 7, 9, 11, 13, 
and 15 (S-- S+ = 6rr, 81r, 101r, 12rr, and 147T, re
spectively). We see from the figure that the pres
ent results agree with experiment much better than 
the data of Everhart [G]. An exception is the region 
of very small Ee, when <I> is probably much 
smaller than rr. 

It is also seen from these data that the agree
ment between Everhart's results [B] and experi
ment[1aJ is to some degree accidental. It is 
brought about by partial compensation of two ef
fects which he did not take into account, the phase 
shift due to the rotation of the axis and the effect 

4 lwe tacitly imply in this case that the interaction between 
the state (lag) (lauY and other states does not lead to additional 
phase multipliers in the amplitude f+(e), since a sudden flipping 
of the internuclear axis does not change in this case the sign 
of the wave function. 

of the non-coinciding trajectories for the fields U + 

and U_. A similar compensation was observed by 
Smith[9] in the study of the process (5). 

Lockwood et al. [ 18] give experimental curves 
of w( e) for E = 25, 8.07, and 5.03 keV, and also 
w( E) for e = 1, 3, and 5°. It is clear from Fig. 3 
that the positions of the theoretical and experimen
tal extrema are in the main close to one another. 
However, the corresponding Wmax and Wmin agree 
poorly, except for the w( e) curve for E = 1 keV, 
where the agreement can be regarded as satisfac
tory. 
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FIG. 3. Curves determining the position of the maxima of 
the charge-exchange probability; continuous curves - theory, 
dashed - experiment (DM- our results, E- Everhart's data). 

To conclude this section, let us check the extent 
to which the remaining approximations used in the 
calculation are valid in the region of E and e 
under consideration. It is easy to verify that con
ditions (9) and (18) are satisfied in our case. Go
ing over to (14), we note that a limitation on the 
permissible values E and e is imposed only by 
the second of these inequalities. Numerical esti
mates yield Zc "'"3Mv/2 and Eec "'" 0.2. Thus, this 
inequality can be rewritten in the form: 

2v-1p_(Ee- 0.2) ~ 1. (27) 

Using the p_( Ee) curve of Fig. 2, we can verify 
that this condition is satisfied except for the small
est values of E and e (the lower left corner of the 
region shown in Fig. 3 ) . A typical value of the left 
side of (27) is several times ten. Thus, the transi
tion to the classical limits described in Sec. 2 is 
justified and the rainbow effect is negligible here. 
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4. CONCLUSION 

We did not take into account in this article the 
following causes for resonance smoothing, which 
were not investigated with sufficient consistency: 
1) rotation of the quasimolecule; 2) transitions 
connected with the fact that the diabatic curve 
crosses an infinite number of terms of the same 
symmetry; 3) autoionization connected with the 
fact that the state (lag)( lau )2 is quasistationary at 
at low values of R. 

The first effect can be accounted for in a man
ner similar to that used by Bates and Williams [12 ] 

(see also formula (24)). The second effect can 
hardly be taken into account theoretically. It is 
more reasonable to solve the inverse problem, 
that of estimating the probabilities of the corre
sponding processes by comparing calculated 
Wmax and Wmin (with account of the rotational 
coupling) with the measured values and of esti
mating the addition to the phase f+ ( (} ) due to 
pseudocrossing by comparing their relative loca
tions. A theoretical calculation of autoionization 
also entails great difficulties. It can be assumed 
however, that in our region of E .and (} this pro
cess does not play a large role. In fact, from 
formulas (24) and (25), it is easy to see that the 
probability (averaged over some region of E and 
(}) (we denote it by w) is close to 1/ 2• On the other 
hand, the experimental values lie in the range 
0.4 < w < 0.6. If autoionization were to play an 
important role, then a noticeable excess of w 
over Y2 would be observed 5>. The fact that w > Y2 
in many cases may be the consequence of either 
experimental errors or of the unjustified assump
tion used in the derivation of (24), that the transi
tions to the excited states do not lead to a change 
in the incident-particle scattering angle. If the 
velocities are sufficiently small, then the state 
of the quasimolecule changes in accordance with 
the adiabatic curve. A perfectly rigorous descrip
tion of the transition to this state from the diabatic 
term is not a simple problem. It must be empha-

S) As can be seen from (24) transitions to the excited bound 
states of He2 + do not change :;;;, since half of the particles that 
go through such a transition contribute to the charge-exchange 
cross section (with excitation), while the other half contribute 
to the excitation cross section. 

sized, incidentally, that such a transition can be 
realized only in large-angle experiments ( (} ..... 1 rad ), 
when it is possible to attain not only an adiabatic 
change of the state of the quasimolecule, but also a 
sufficiently close approach of the ion to the atom. 

It must be noted in conclusion that, owing to the 
presence of interference, measurements of the dif
ferential cross section of resonance charge ex
change make it possible to obtain much more infor
mation on the behavior of the terms than from the 
usual measurements of the angular distribution in 
the absence of interference (elastic scattering of 
atoms, scattering of ions by atoms of a different 
gas, etc.). 
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