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The asymptotic behavior of the eigenvalues of a system of four differential equations has 
been obtained in order to determine the splitting in a magnetic field of levels degenerate 
with respect to spin. The large magnitude of the splitting which (in order of magnitude) 
exceeds by a factor of m 0 I m the splitting 2J.LH for a free electron is characteristic both 
for electrons and for holes. The values of the parameters for the bismuth spectrum deter­
mined previously [5] are used in the calculations of the dependence of the spin splitting on 
the direction of the magnetic field (Figs. 1 and 2). 

1. It is well known [t] that the energy levels of 
electrons and of holes in a metal whose space lat­
tice has a center of inversion are twofold degen­
.erate. This degeneracy, which is analogous to the 
spin degeneracy for a free electron, is removed by 
the application of a magnetic field. As long as the 
magnetic field is weak the corresponding splitting 
is small and in order to calculate it one can utilize 
the quasiclassical approximation carrying out an 
expansion in powers of li. 

In the first approximation one obtains the quan­
tization condition [2] 

c 
ehH S(e, kz') = 2:n:n, 

which follows directly from the commutation re­
lation 

{kx', kv'} = ie1iHjc, k = -i1iV -eAjc. 

Here S( E, kz') is the area of the intersection of 
the surface E( k) = E = const by the plane kz' 
= const, the z' axis is chosen to lie along the 
magnetic field, n is an integer. 

The result of the next approximation is fairly 
obvious: 

It goes over into the well known expression which 
determines the free electron levels if we set 
g( E, kz') = 2 and take into account that S( E, kz,) 
= 7r(2m0E -k~' ). The function g(E, kz') charac­
terizing the "spin" splitting can be found in the 
case of metals of the type of bismuth the energy 
spectrum of which in the absence of a magnetic 
field was obtained in the paper by Abrikosov and 
the author [a]. 

Utilizing the results of the reference cited 
above [aJ, the author had earlier attempted [4.] 

to calculate the energy spectrum in the presence 
of a magnetic field. In the resulting equations the 
magnetic field appears in two ways: first, through 
the operators k, and second, explicitly, describing 
in a certain sense the interaction with the mag­
netic moment of a free particle. We have suc­
ceeded in solving these equations exactly only 
for the case of holes and for a particular direction 
of the magnetic field. For an arbitrary direction 
we have discussed in the quasiclassical approxi­
mation only the explicit dependence on the field 
which, as has now become clear, leads to a rela­
tively small splitting of the levels -of the order 
of magnitude of the splitting for a free electron 
J.LH ( J.L is the Bohr magneton). Below, neglecting 
this small splitting, we carry out a calculation of 
the function g( E, kz' ). It has turned out that 
g( E, kz') is of the order of magnitude unity, while 
the splitting is of the order of magnitude m 0J.LH/m, 
which appreciably exceeds J.LH due to the smallness 
of the effective masses m of the carriers in Bi. 

2. One of the equations, or more accurately the 
system of four equations determining the spectrum 
of the electrons in a magnetic field, has the form 

(Vk + r - e) w = o. (1) 

The functions w are labelled by the subscript i 
(i = 1, 2, 3, 4) which we omit together with the ma­
trix subscripts on V and r; a summation over one 
of them is implied in (1). The second equation is 
obtained from (1) by changing the sign of the con­
stant A of the spin-orbit interaction on which the 
matrix r depends. The explicit form of the mat­
rices is given in Sec. 3. One can easily convince 

423 



424 L. A. FAL'KOVSKII 

oneself that in the absence of a magnetic field both 
equations have the same eigenvalues. 

We seek 'II in the form 

where the function s is assumed to be common to 
all the four functions '11. For ci> we obtain 

[V(k-ih.V) +r-e]<l>=O, 

k = Vs- ec-1A. 

(2) 

(3) 

We seek ci> in the form of a series in powers of 
ti/i 

"" h )m 
<l> = ~ h- IJlm· 

m=O 

Comparing in (2) terms involving the same powers 
of ti we obtain 

(Vk + r- e)IJlm = -VVQJm-t· (4) 

For m = 0 we obtain a homogeneous system of al­
gebraic equations which has a solution under the 
condition 

Det(Vk + r- e) = 0. (5) 

The latter equation is the Hamilton-Jacobi equation 
in our approximation. The general solution of (4) 
for m = 0 has the form 

qlo=CqJ, 

where cp is a solution. 0 

We now discuss (4) for m = 1. The resultant 
equation has a solution under the condition 

QJVVCQJ = 0, (6) 

Equation (6) determines the function C. For its 
solution it is useful to note ( cf. the Appendix) that 

Here v =adak. 
It is convenient to choose the vector potential 

in the form Ay' = Az' = 0, Ax'= - Hy'. Then cp 
and C can be regarded as being independent of 
x' and z', and s can be sought in the form 

s = x'Kx' + z'Kz' + cr(y') 

with constant Kx' and Kz', as a result of which (3) 
goes over into 

kx' = Kx' + eHy' I c, ku• = dcr I d11•, kz' = Kz•. 

These equations enable us to use the variable 

1 )We do not consider the possible existence of two indepen­
dent solutions, which can be realized only at isolated points. 

kx' instead of y'. 
Equation (5) for fixed e: and kz' determines 

the relationship ky' ( kx' ) , i.e., the trajectory of 
the particle in momentum space. With its aid we 
obtain 

cr = e~~ k 11 ,dkx'· 

The solution of (6) can be conveniently repre­
sented in the form 

C = c0 (~1JlVy')-'he-ie, 
1 r dkx' ( - dqJ d; \ 

8=-J--- QJV11,-----V11 ,QJ ]. 
2i qJIJlVy• dkx' dkx' ' 

(7) 

In future we shall be interested in the "turning 
points" at which Vy' = 0. At the turning point a 
singularity arises in C, due to the presence of 
Vy' in the factor preceding the exponential, and in 
order to go around this point we shall have to go 
over to complex values of k. All the other quanti­
ties in (7) are not singular at vy' = 0, and, there­
fore, from the start it is sufficient to consider 
them only for real values of k. In this case the 
expression for e can be transformed with the aid 
of the equation ( cf. the Appendix ) 

lm [d1Jl*(v11•Vx'- Vx•Vy•)QJ] =0 

to a form which does not depend on the choice of 
the vector potential 

8= --~Im~-~IJl·(vx,_d __ y 11,_d_)IJl· 
2 vi1PI 2 dky' dkx' ' 

dk = [ ( dkx') 2 + ( dky') 2]'1•, V = ( Vx'2 + v11 ,2) '/•. 

Since in bismuth closed equal-energy surfaces 
are of interest, the corresponding trajectories are 
closed curves. This means that there exist several 
(at least two) branches k~o/) ( kx') (a = 1, 2, ... ). 
At the turning points the two branches merge be­
coming complex in the classically inaccessible 
region of values of kx'· In the classically acces­
sible region the function 'II is a linear combina­
tion of the functions lJ1 defined on the branches 
k~o/). For kx' - ± oo the choice of the branch is 
determined by the condition that 'II should be finite. 

It is now easy to formulate the condition of 
quantization. We choose a certain point (kx'• ky') 
on the trajectory and observe the variation of 'II 
in moving along this trajectory. After a complete 
circuit the quantity s will acquire an increment 
( c/ eH )s ( e:, kz'); we denote the increment in the 
quantity e by Y2 1rg( e:, kz' ). It remains now to find 
the value of the increment arising from the factor 
preceding the exponential in C (7). In order to do 
this we shall go around the turning points, pene­
trating into the classically inaccessible region, in 
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order to make a unique choice of the branch. It is 
essential for the argument that in the neighborhood 
of a "turning point" Vy' can be represented by the 
expansion Vy' = l ( ky' - k}0,l). Thus, in going over, 
for example, from positive to negative values of 
ky'- k}0,> the quantity ln ,;vy; acquires an incre­
ment ± 11/2 depending on whether we are dealing 
with the right-hand or the left-hand turning point. 
Further, since E ( k) = E (- k), there exists an even 
number of turning points, while at points obtained 
from one another by inversion the increment of 
ln-rv;;; has the same sign. 

Since '11 must be unique, we obtain up to terms 
in ti2 the relation given in Sec. 1 with the function 
g( E, kz') being determined by the equation 

1 ~ dk [ d] 
g(e, kz,)=nlm ;r vlcpl2cp• V dk z' cp. (8) 

The fact that the function g(E, kz') appears in the 
condition of quantization with the sign ± is ex­
plained by the existence of two equations which go 
over into one another under the replacement 
.6.- - .6.. 

The condition for the validity of the quasiclas­
sical approximation is ehH/ 21rcS « 1. With the 
same degree of accuracy we obtain by a direct 
differentiation the change in energy .6.E in transi­
tions in which the quantum numbers kz' and n arE 
unchanged (with only the "spin" quantum number 
undergoing a change ) 

lie= efillg(e, kz') / 2m(e, kz')c, 

1 iJS(e, kz') 
m(e, kz') = Zn iJe . 

It is natural to call the quantity 

(9) 

2m( E, kz 1 )/ I g( E, kz')l the "spin" mass. Formula 
(9) explains the experimentally observed equality 
(in order of magnitude) of the "spin" and the 
"orbital" masses-anomalously small orbital 
masses correspond to small spin masses. This 
situation is possible because, as we shall see be­
low, g( E, kz') is of order of magnitude unity. 

3. For the evaluation of the function g(E, kz') 
for electrons we utilize the following representa­
tion of the matrices v and r [4]: 

~(1) 11 0 r+ 
f= 11 -~(1) -r 0 

0 -r_ - ~(ll -11 

r+ 0 -11 ~(l) 

Here uy and Uz are the Pauli matrices, 0 in 
Vx, Vy, Vz and 1 in Vz are two-rowed matrices: 

1 =110 I· 
01 ' 

a, b, .6., {3°>, y., and Y- are constants. The coor­
dinate axes are chosen as follows: the x axis 
along the binary axis c2, and the z axis makes 
an angle arc cos Y3 with the trigonal axis C3 of 
the crystal. We consider one of the three groups 
of electrons. The C2 axis for this group is a two­
fold symmetry axis [5]. 

We choose for cp the co-factors of the elements 
of the first row of the matrix I k•V + r - E I: 

cp(l) = (k3 + Q+) [.Li2 + k 12 + (k2 + Q_) (k3 - Q+)] 

+ V-2 (k2 + Q_)' 

cp(2) = (11 + ik1} [112 + k12 + (k2 + Q_) (ka- Q+)] 

+ v-(11 + ikt} (k2 + Q_), cp<4J = 'V+('V-2 + ka2- Q+2) 

- V-(11 + ikt) 2; Q± = e + W1>, k1 = bkx, 

k2, a= bky + akz. 

The following value of I cp 12 corresponds to the 
above choice: 

4 

i=l 

X [(Q+ + Q_) (112 + k12) + Q_(ka2 + 'V-2 _ Q+2) 

+ Q+ ( k22 + 'V+2- Q_2) ]. 

Equation (5) relating kt. k2, and k3, can be 
solved for kt: 

kt2 = Q+Q-- 'V+'V-- 112 - k2k3 + -vu. (10) 

where we have used the notation 

u = (Q_v __ g+V+)2 + 4A2v+v- _ (v-2 _ Q+2)ki 

- (V+2- Q_2)k32 + 2(V-'V+- Q_Q+)k2ka. 

We introduce the unit vector n directed along 
the magnetic field. From (10) and 

kn = kz' = const (11) 

we obtain the differential equation for the trajec­
tory 

where na (a = 1, 2, 3) are related to the Cartesian 
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components of the vector n 

n1 = 2an.,, n2, a = any ± bnz. 

a) Let us consider the case nx = 0. The mag­
netic field lies in the plane perpendicular to the 
C2 axis. We use as our starting point 

( k ) _ 2 I ,t dk cp"V.,dcp/dk2 g e, z' -- m 'j' 2-~---:-'---
lt I cp 12v., 

2 ,+, dk2 • ( a fJ ) 
= n Im 'j' nabvd cp 12 cp v X na {}~ - n2 &ka cp. 

Evaluating 

Im cp"Vx &cp = 2My_ [v-( -v-Y+ + ~LQ_,_- k2ks) 
&k2 

_ 'Y+('Y-2 + ks2 _ Q+2) + v-l'uJ, 

Im cp*V., acp = 2db [k32Q_2- k22(y_2- Q+2) 
&ka 

and eliminating k3 by means of 

ka = na-1 (-n2k2 + 2abkz'), (12) 

we obtain for g( e:, kz') an expression which re­
duces to elliptic integrals. It has a fairly simple 
form for kz' = 0: 

2d 1' L + Mt + Nt2 

g(e, O) = nD~ dt w(-1 + n2n3t2 + w)'J,(P + Qt + Rt2) ' 
-t, 

L = n2(-3Dwv-Y+ + Q+2Y+2 + 2y_2y+2- 3Q_Q+'V-'V+ 

+ 4dZV-Y+) - na(Dwy_2 

+ Y-2Q_Q+- 2Y-3Y+ +Y-Y+Q+2), 

M = nzl"D[Dw(Q_n:?: + Q+na) + (y+Q+- y_Q_) 

X (y+n2- Y-na)], N = nzD[n22Q-2 - na2(2y_2 - Q+2) 

- 2(Y-Y+- Q_Q+)nzna], P = DwQ+ + Q_y_2 

- Q+Y-Y+• 

Q = l"D[ (Dw + Q_Q+- Y-Y+)nz -- (Y-2 - Q+2)na], 

R = nzD(Q_nz- Q+na), D = Y-Y+- Q_Q+ + d2; 

-1 + n2n3t~ + w(t~) = 0 and a change of variables 

has been utilized 

which takes (12) into account. 
The quantity g( Ef, 0) is of particular interest 

since the intersection of the Fermi surface by the 
plane kz' = 0 determines the nature of the oscil­
lations of the magnetic susceptibility, conductivity, 
etc. A plot of g( Ef, 0) against the direction of the 
magnetic field for nx = 0 is shown in Fig. 1. For 
the calculation we have utilized the parameters of 
the bismuth spectrum obtained earlier [5]. We have 
restricted ourselves to the angular interval from 
0 to 1r, since g( e:, kz') changes sign when the 
magnetic field changes sign. The reason for the 
sharp variations in g is that on the Fermi surface 
in the plane kx = 0 there exist the two points which 
were mentioned in the first footnote. 

b) We now consider the case ny = nz = 0. The 
magnetic field is directed along the second order 
axis. Representing g( e:, kz') in the form 

and taking into account the fact that 

ae ae ae . 
Dz = akz = a ak2 - a aka = a ( D2- Da), 

d a v3 a 
dks = aka - v;- ak2 ' 

we obtain 

2 ,+, dka • ( a a ) 
g(e,k.,)=·--lm'f I l2 ( )cpV. v2ak -va 8k cp. 

1t a cp D2 D2 - Va 3 2 

g 
zl--------

0 
JO 50 

lJ 
1!0 150 !40 

S. deg 
-I 

.z r 
-J 

FIG. 1. The g-factor in the central section of the Fermi sur­
face for electrons vs. the direction of the magnetic field. The 
magnetic field is in the plane perpendicular to the C2 axis. 
The angle is measured from the "former" threefold axis. The 
directions of the C, and C3 axes correspond to angles of 19.5° 
and 109.5°. The Fermi surface is elongated in the direction of 
the 13° angle. 
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Evaluating the derivatives 

ilcp 
Imcp"V.- =- 4/".y+Y-ktkaa, 

ilkz 

we obtain 

Im cp*Vz ilcp = - 4!'.Y+'V-ktk3a, 
ilk a 

If now use (10) to express k2 in terms of kt 

(14) 

= const and k3 and substitute in (14), then the cor­
responding integral will vanish due to the fact that 
the integrand is odd in k3, so that in the case under 
consideration g(E, kz') = 0. 

c) The case of an arbitrary direction of the mag­
netic field. We write for g( E, kz') the expression 

2 ,\', cp"Vxdcp/dkz 
g ( e, kz') = - Im j dk2 I l2 , 

lt cp Vx 

which by means of straightforward transforma­
tions can be brought to the form 

2 ,\', dkz 
g ( 8 ' kz') = n Im 'j' b ( v3n1- Vtna) I cp 12 

bk+ r 
0 

The averages appearing in the above expression 
are equal to 

Imcp"Vx ilq> = M{[L\2 + k12+(k2 + ~L) (ka- Q+)F 
ilka 

- 4ktZ.V+Y-- Y+Z.V-2- Y-2 (k2 + Q_)2 + Y+2 (ka + Q+)2}, 

Im cp"Vx acp = 2My-{y-(/".2 + k 12) 
flk 

- Y+(Y-2- Q+2 + ka2)}, lm cp"Vv -:: = 4MY+Y-ktka. 

It is not possible to simplify (15) further since 
we have not succeeded in the general case in ex­
pressing k1 and k3 in terms of k2 from (10) and 
(11). 

4. The function g( E, kz 1 ) for holes can be ob­
tained from (15) by means of the substitution 

Y+-+ y, Y--+ y, W1J-+ 0 

and a transition to a coordinate system in which 
the z axis coincides with the trigonal axis of the 
crystal (Fig. 2). However, as has been shown 
earlier [5], the hole spectrum in the absence of a 
magnetic field is very close to quadratic. This 
fact enables us to use a different method of solv­
ing Eqs. (1), now written in the formC4J 

(jll 

r (jl2 C'+~-Q 0 ) bk_ ak.-L\--Q =0, 
-ak.+~-Q -bk y 0 

-ak.-+L\ -Q 

(jla 

. 0 y -bk - cp4 ' 
k± = ky±ikx• (16) 

We obtain cp 3 and cp 4 from the first and the 
second equations of system (16) and substitute 
them into the third and the fourth equations: 

[y2 _(I'.- Q? + a2k.2 + b2k)~_) (jl1 

+ (-2Mf< + abkzk+ + abk+k.)cp2 = 0, 

(2Mk_ + abk_k. + abk.k_) q>1 

+ [y 2 - (I'.+ Q)2 + a2kz2 + b2k_k+] q>2 = 0. (17) 

Since the Fermi level lies very near to the top of 
the band which is determined by the equation 
~ = ~ - I y I, while k2 is of order of magnitude 
y- (~- Q )2 (for the sake of definiteness we take 
~ to be positive), we can neglect the terms a2ki 
+ b2k-k+ and abk-kz + abkzL in the second equa­
tion and abkzk+ + abk+kz in the first equation. 
After this problem reduces to the solution of the 
one equation: 

[21 r i(Q- L\+ 1 rl) + a2 'k.2 + 1 r \ ~L\ b2k+k_l cp1= o. (18) 

Equation (18) can be conveniently solved using 
the vector potential Ax' = Az' = 0, Ay' = Hx'. 
Noting that 

k± = ku' cose + kz' sine± ikx 

= (kv'- eHx'jc) cos 8 + kz· sin 6 ± ti8j8x'. 

k. =I- (ky•- eHx' J c) sin 6 + k.· cos 6 

J 
2 

or--j*o--+->_,~~~~~o--,±~ 

-I 0, deg 

-2'1------

FIG. 2. The g-factor for holes vs. the direction of the mag­
netic field. The angle is measured from the trigonal axis. 
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( ky', kz, are constants, e is the angle between 
the magnetic field and the C3 axis ) we obtain 

k+k- = - ft2 ::2 + [ ( ky' - eH :' ) cos 8 + k., sin 8 r 
eHh 

--cos8. 
c 

Carrying out an analogous calculation for the 
system obtained from (17) by the replacement 
~- - ~. we obtain an equation which differs from 
(18) by the interchange of k+ and k-. Noting that 
the expression for k._f~+ differs from k.+k_ only 
by the sign of the last term we obtain the spectrum 

- ehH [( 1) 1 cos 8 J 
Q- Q = -c- n+-.z m(8) ± -2m(O) 

k.,2m2 (8) 
+ 2m (0) m2(n/2) ' 

(19) 

where m( e) is the cyclotron mass 

Q ( a2Q )-'/• m(8)=- cos2 8---sin2 8 
b2 b2 IYI 

From (19) it follows that in the case when the mag­
netic field is perpendicular to the c3 axis the 
"spin" splitting is equal to zero, while in a field 
directed along the trigonal axis it is equal to the 
orbital splitting. 

We note that Smith et al. [ 6] did in fact observe 
a small splitting in the first case. However, in the 
second case they had to assume that the magnitude 
of the spin splitting exceeds the orbital splitting by 
a factor two. 

There is a way of making the dependence of the 
g-factor on the direction of the magnetic field con­
tinuous (Fig. 1). In order to do this we must as­
scribe the discontinuity in g to the quantum num­
ber n ( cf., Sec. 1 ), by replacing n by n± 1 on one 
side of the discontinuity. Then the left hand side 
of Fig. 1 (0 < e < 75°) will be lowered and the 
right hand side ( 105° < e < 180°) will be raised by 
four. A continuous variation both of the g factor 
and of the number n corresponds to a different 
way of going around the zeros of I cp 12 in the com­
plex k2 plane (Sec. 3a). 

I express my deep gratitude to L. M. Voronina 
for the evaluation of the integrals, to A. S. Kronrod 
for a number of remarks, and to A. A. Abrikosov 
for discussions of this paper. 

APPENDIX 

1. We now give a proof of the relation cpVcp 
= cpcpv. Differentiating (4) for m = 0 with respect 
to k and multiplying on the left by ({;, we obtain 

-( oe) o<p <p Y- ok <p + <p(Vk + r- e) ok = 0. 

Utilizing the hermiticity of V and r we obtain the 
desired result. 

2. We now give a proof that 
Im [ cp *(vy'Vx'- Vx'Vy' )dcp] = 0. We differentiate 
(4) for m = 0 with respect to k along the traj ec­
tory, i.e., for E = const, kz' = const and we mul­
tiply on the left by dcp * 

d<p*(Vx·dkx· + Vy•dky•)<p + d<p*(Vk + r- e)d<p = 0, 

from which the required relation follows since 

Im[d(p*(Vk + r- e)d<p] = 0, 
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