
SOVIET PHYSICS JETP VOLUME 22, NUMBER 2 FEBRUARY, 1966 

STRUCTURE OF DOMAIN BOUNDARY IN A FERROMAGNETIC OF FINITE THICKNESS 

V. A. IGNATCHENKO and Yu. V. ZAKHAROV 

Physics Institute, Siberian Division, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor February 20, 1965 

J. Exptl. Theoret. Phys. (U.S.S.R.) 49, 599-608 (August, 1965) 

The structure of the domain boundary of a ferromagnetic crystal of finite thickness 2d is 
determined by perturbation theory and by taking into account the surface anisotropy {3'. A 
uniform boundary and a boundary which is longitudinally periodic are considered. When 
{3' "' 0 there exists a range of thicknesses d0 < d <de in which a Neel boundary can exist; 
when {3' > f3c the Bloch boundary is energetically more favorable at any thickness. General 
equations are derived for the period and shape of the periodic boundary and are investigated 
in two limiting cases. Depending on the magnitude of {3', the Bloch boundary may become 
narrower or broaden toward the crystal surface. 

INTRODUCTION 

THE structure and the energy of the domain 
boundary in an infinite uniaxial ferromagnetic 
crystal were first analyzed rigorously by Landau 
and Lifshitz [1] and then by Shirobokov [2]. Similar 
problems for crystals with another type of magnetic 
anisotropy were solved by many authors [3- 5]. The 
structure of the domain boundary near the Curie 
temperature was investigated by Bulaevski1 and 
Ginzburg [GJ. In the places where the boundary 
emerges to the crystal surface, magnetic poles 
are formed. The influence of the demagnetizing 
fields produced by these poles on the structure of 
the domain boundary in a bulk crystal is small, and 
distorts the latter only near the crystal surface; 
for thin films, however, it can change the structure 
of the boundary radically. Neel [7] was the first to 
show that, starting with some critical values of the 
film thickness, a boundary in which the vector of 
the magnetic moment turns without going outside 
the plane of the crystal is energetically more 
favored; such boundaries have been named Neel 
boundaries. 

The energies of the Bloch and Neel boundaries 
in thin films (and the critical thickness of the film) 
were later determined more accurately by many 
workers [8- 12 ]. The influence of the demagnetizing 
fields on the structure of the Bloch boundary in a 
thin film was investigated by Hoffman [12 ] and by 
Muller and Dawson [13]. Shtrikman and Treves [14 ] 

and Bhide and Shenoy[15] investigated whether a 
longitudinally-periodic boundary (i.e., broken up 
into sections of opposite magnetization) can be 
produced under the influence of the demagnetizing 

fields. 

None of these investigations, however, took into 
account the general boundary conditions for the 
magnetization vector M on the surface of the crys
tal, i.e., the effect of surface anisotropy. The sur
face anisotropy, as shown by experiments on spin
wave resonance, can be large; its nature and mag
nitude were discussed by many authors [ 16 - 18 ]. The 
purpose of the present paper is to investigate the 
structure of the domain boundary in a uniaxial fer
romagnetic crystal. The solution of such a prob
lem is at present of special interest in view of the 
possibilities that are opening up for experimentally 
investigating the structure of the boundary on the 
surface of the crystal [19 •20]. 

1. GENERAL EQUATIONS AND BOUNDARY 
CONDITIONS 

For temperatures far from the Curie tempera
ture, the volume density of the Hamiltonian for a 
uniaxial ferromagnetic crystal inside the crystal 
can be written in the form 

1, 1 [(' oM )2 ( oM )z ( oM )z] ::Jev =- a - + -- + -
2 ox oy oz 

1 H2 

+ -2 fl [M2 - ( Ml) 2] + Sn ' (1.1) 

where 1 is a unit vector in the direction of the easy 
magnetization axis, a the exchange constant (we 
neglect the difference between the constants a 1 

and a 2 in the expression for the exchange energy), 
and {3 the anisotropy constant. The Landau
Lifshitz equation in the static case takes the form 
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(MH•]. = 0, (1.2) * 
where 

6 :Je a :Je a a :Je H•- ---- ___ _L __ --~--

- 6M - aM ' axk a ( aMj axk) · 

In our case 

Hv• = aV 2M + fll(Ml) + H, (1.3) 

where H is the demagnetizing field, which should 
be determined from the solution of the boundary 
value problem of magnetostatics. 

The volume density of the Hamiltonian near the 
surface is of the form 

:Jes = 1 MM2- (Ml) 2]- -
1 fl' (Mn)2 

2 2 

a' aM 1 [( aM )2 ( aM )z +--M-+-a - + -
a an 2 ax . ay 

( a:l\f )2] ff2 
+ az + 8n' 

(1.4) 

where n is the outward normal to the surface, a' 
and {3' are the exchange and anisotropy surface 
constants (in accordance with experimental data 
on spin-wave resonance, we shall assume a' to 
be a positive quantity), and a is the lattice con
stant. The effective field near the surface is 

a' aM 
H8• = fll(Ml) + fl'n(Mn)- -- -,-+ aV n 2M + H, (1.5) 

a un 

where the index n denotes the absence of differen
tiation with respect to the coordinate that is nor
mal to the surface. 

Equation (1.2) with a field in the form (1.5) is 
the boundary condition of the problem. Both the 
equations and the boundary conditions are simul
taneously satisfied on the surface, so that we can 
write the boundary conditions in the form [21 ] 

(M(Hs•- Hv•)] = 0, 

or in our case 

M, _<:_-- fl'n (Mn) = 0. [ ' aM l 
a an 

(1.6) 

We shall henceforth consider a crystal in the 
form of a layer of thickness 2d, with an easy axis 
parallel to the surface of the layer and coinciding 
with the y axis (Fig. 1). In terms of projections 
along the coordinate axes, noting that only two out 
of the three equations in (1.2) are independent, we 
obtain the system 
mxV 2my -myV2mx + a2mxmy = a-1(myhx- mxhy), 

m,V2my- myV 2m, + a2m,my = a-1(myhz- m,hy), 

mx2 + ml + mz2 = 1 (1. 7) 

z 

FIG. 1 

with boundary conditions 

amx amy 
mlJ---mx--=0 an an , 

(1.8a) 

when z = ± d and 

mx, m,-+-0, my-+- +1 (1.8b) 

when x ---. ± oo , where 

m = M I M, h = H I M, a2 = fl I a. 

The hi in the right side of (1. 7) must be deter
mined from the solution of the boundary problem 
of magnetostatics (h = -grad zj} ): 

V2'1jJ• = 0- outside the layer, 

V~i = -4ndivm- inside the layer (1.9) 

with conditions on the boundary of the layer: 

o'IJli I ax - i)'ljl• I ax = o, o'IJlt I az- o'IJl" I az = 4nm,. 

In the general case, Eqs. (1. 7) and (1.9) constitute 
the complete system of equations of the problem. 
In view of its exceeding complexity, all the attempts 
at its solution were based heretofore on some 
method of approximately decoupling the systems 
(1. 7) and (1. 9). 

2. HOMOGENEOUSBOUNDARY 

It is simplest to separate the systems in the 
case when d---. oo. Then hy = hz = 0 and hx 
= - 47Tmx, the functions m do not depend on y or 
z, and the system (1. 7) with boundary conditions 
(1.8b) has two solutions: 

a) Bloch boundary: 

mx = 0, my =•th ax, m, = sech ax, a2 = f1 I a; (2.1a) * 
b) Neel boundary: 

mx = sech a1x, my = th atx, 

m, = 0, a12 = (fl + 4:n:) I a. (2.1b) 

Substituting these solutions in (1.1) and calcu-

*th =tanh. 
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latin1 the surface density of the boundary energy 
y = JC dx, we obtain for the Bloch and Neel bound
aries, respectively, 

'VB= 2M2 ( a~)'!', '\'N =2M2 [ a(~+ 4n) )'I•; 

we see that the Bloch boundary is energetically 
more favorable. 

In the limiting case d - 0, the systems also 
separate; then (when {3' = 0) 

'VB= 2M2 [ a(~+ 4n)].'1', 'YN =2M2 ( a~)'!•, 

i.e., YN < YB· 
For a finite value of d, the problem can be 

simplified by assuming that the boundary is lon
gitudinally homogeneous. Then in the system 
(1. 7) the derivatives with respect to y and the 
fields hy vanish. However, the system (1.7)-(1.9) 
does not separate. Making the change of variables 
ry =ax and ~ = az, we rewrite the system (1.7) in 
the form 

pressed in terms of the functions fJ. + and fJ.- by 

11mx = -sit-- c~t+ thY], !1my = 11+ sech Y], 
11mz ='Cit-- s~t+ th Yj. (2.5) 

The boundary conditions for ~ = ± ad are of the 
form 

o11+ Wa 
-- = + sz-,-th YJ sech YJ, 

d£ a a 

a~t- Wa 
--= +cs-,-sechYJ. d£ - a a 

(2.6) 

The magnetic fields hx and hz in (2.4) were 
obtained from (1.9), in which the zeroth-approxi
mation solution (2.3) was substituted. With the aid 
of the Fourier transformation with respect to ry 
we obtain 

"" ln 
hx = - 4nc ~ sech- (1 - e-10 ch Zs] cos ZYJ dl 

0 2 

t ln . + 4n5 ) sech- e-10 sh Zs sm lYJ dl, 
0 2 

r ln . 
hz = 4nc j sech 2 . e-IO sh l£ sm ZY] dl 

co l 
- 4ns ~ sech -~ e-10 ch lt; cos lYJ dl, 

0 2 
(2. 7) * 

1 iJ2mz iJ2my 
= 1f myhz + my~- mz o£2 mx2 + my2 + mz2 = 1. where 0 = ad. 

(2.2) The limiting energy with account of the first 

We seek its solution by a perturbation method: approximation is of the form 

It is easy to see that in this case the small par am
eter will be 4rr/ {3. The zeroth -approximation solu
tion, satisfying the system (2.2) without the right 
side, is of the form 

mx0 = c sech ax, my0 = th ax, mz0 = s sech ax, (2.3) 

where c and s are constants, and c2 + s 2 = 1. It 
satisfies also the boundary conditions if {3' 
~ (4rra/a2 ) 112• 

If we put c =cos c.p and s = sin c.p, then rr/2-
is the angle between the plane of the boundary and 
the plane in which M rotates inside the boundary 
(c.p = 0 corresponds to the Neel boundary, c.p = rr/2 
to the Bloch boundary). For any value of c.p, the 
energy of the boundary in the zeroth approximation 
is Yo= 2M2(a{3 )112, i.e., the zeroth-approximation 
solution is degenerate in c.p. 

The system of first-approximation equations is 

L 11+ = ~-! (hxc + hzs), L 11- = ~-! (hxs- hzc), (2.4) 

where 

L = az I OYJ 2 + o2 I o£2 + (2 sech2 YJ- 1), 

and the first-approximation corrections are ex-

v = vo + 11vv +11vs, 
1 H +oo 

11vv =- I ds I dYJ::fev', 
2al\ J J 

-0 -00 

where JCy and JCs are the first-approximation 
corrections to the Hamiltonians. It is easy to 
show that Ayy and Ays do not depend on fJ. + or 
f.J.-, and that 

M2+oo 

11vv =- Z:a I sech YJ (lixc + lizs)dYJ, !1y8 =- s2WaM2/II, 

(2.8) 

where hi are the values of the fields (2. 7) aver
aged over ~· 

From the condition a ( Ayy + Ays )/ Bc.p = 0 it 
follows that c.p can assume only two values, zero 
and rr/2, i.e., the degeneracy in c.p is lifted when 
the first approximation is taken into account; the 

*sh =sinh. 
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boundary can be either of the Bloch or of the Neel 
type. For a Bloch boundary ( c = 0, s = 1) we have 

M2+"" 
~yB=-- I nz sech TJ dTJ 

2cr J 
-00 

for a Neel boundary (c = 1, s = 0) 

M2+"" . 4:rtM2 
~yN= --I nxsechrt drt = --[1-B{b)] 

2crJ a 
-oo 

(2.9) 

(2.10) 

Using the Parseval inequality, the double integral 
B( 6) in these expressions was transformed into 

:rt r l:rt shU> 
B(b) = · J sech2 - e-10 --dl 

2 0 2 lb 

and calculated with an electronic computer. The 
results for D.yN and D.yB yielded the plots of 
Fig. 2. 

~ I 

0.5 ----- ----~2 
J 

FIG. 2. The corrections ~YB and ~YN to the boundary en
ergy as functions of the thickness of the layer: curve 1- ~YN• 

curves 2 and 3 - ~YB for {3' = 0 and {3'"' 0.3 (4rr/aa) respec
tively. 

The critical value of the film thickness, below 
which the Neel boundary becomes more favorable, 
corresponds at {3' = 0 to 6c = 2.54. However, when 
{3' "" 0, as can be seen from Fig. 2, D.yB can cross 
D.yN at two points, 6 = 6c and 6 = 60. The Neel 
boundary can exist only in the thickness interval 
60 < 6 < 6c; as {3' increases, this interval de
creases. This can be seen especially clearly on 
Fig. 3, obtained from the equality D.yB = .6-'YN· 
When {3' > {30 R; o .4 ( 47f I aa ) the Bloch boundary is 
energetically more favored at any crystal thickness. 

We note that the fields hx and hz can be ob
tained approximately with the aid of the demagne
tizing factors, by approximating the boundary by 
means of an elliptic cylinder; it is not clear, how
ever, what should be assumed for the effective 
width of a magnetic pole in the form sech ax. How
ever, if .6-'YB and .6-'YN• expressed in terms of the 

B 

0 D.l D,t, 0.5 
f'I'-II}.J' 

FIG. 3. N and B- regions of the existence of Neel and 
Bloch boundaries, respectively. 

demagnetizing factors, are compared with the cor
responding computer expressions (Fig. 2), it is 
easy to verify that this width should be taken equal 
to 5/a. Thus, (2.9) and (2.10) take the approximate 
form 

4:rtM2[ 1 a W] 
~VB~ -cr-. 1 +0.46-([ 4:rt ' 

~ ,..__ 4:rtM2 0.46 
VN "' -a- 1 + 0 46 . 

(2.11) 

The change in the form of the Bloch boundary is 
determined in the first approximation by the system 
(2.4) with boundary conditions (2.6) and with c = 0 
and s = 1. Such a problem, with {3' = 0, was solved 
by Muller and Dawson [l3]; the solution was obtained 
in the form of multiple series. The general char
acter of the variation of the effective width of the 
Bloch boundary, as a function of z for {3' = 0, is 
shown in Fig. 4a. In addition to a decrease in the 
effective width of the boundary at the surface, a 
component mx(x) = -mx( -x) appears. 

A B 

FIG. 4 

c 

Our approximate analysis for {3' "" 0 has shown 
that if {3' is sufficiently large there can occur the 
cases shown in Figs. 4b and 4c, i.e., the effective 
width of the boundary can increase at the surface 
of the ferromagnet. 

The effective width b of the boundary, averaged 
over the thickness of the film, can be obtained 
either from the first-approximation equations for 
a Bloch boundary by averaging them over ~, or 
from expression (2.11) for .6-yB: 
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(2.12) 

We see therefore that, depending on the relation 
between the corrections due to the demagnetizing 
fields and the surface anisotropy, the average ef
fective width of the Bloch boundary in a thin film 
can be either larger or smaller than the width of 
the boundary ~ 5/ a in the bulk material. 

The change in the form of the Neel boundary is 
determined in first approximation by the system 
(2.4) with boundary conditions (2.6) and with c = 1, 
s = o. 

3. PERIODIC BOUNDARY 

There is no justification for assuming that the 
boundary is longitudinally uniform along the y 
axis in a crystal of finite thickness; this assump
tion was employed in most papers and in the pre
ceding section only for the sake of simplicity. It 
is there that a boundary with variable polarity 
along its length may be energetically more favored, 
since this leads to a decrease in the energy of the 
demagnetizing fields (but simultaneously to an in
crease in the exchange energy). For sufficiently 
large d, we can regard the boundary as a thin film 
broken up into domains, and apply to it the results 
of the earlier papers [14 •22 ]. 

For a complete solution of the problem of the 
boundary in a layer, it is necessary to find a solu
tion periodic in y for the system (1. 7) with bound
ary conditions (1. 8). The expected form of the so
lution is shown in Fig. 5. Such a behavior of the 
solution is well approximated by the Jacobi elliptic 
functions en ( 2K/ T )y and sn ( 2K/ T )y, which were 
used by Shirobokov [2] to investigate a periodic do
main structure. The form and the period of the 
solution can vary over a wide range, depending on 
the value of T and on the modulus k of the com
plete elliptic integrals K and E. 

FIG. 5 

If we write the solution in the form 

mx =en u sech 11 + !J.mx(11, u, s), 

mz =· sn u sech 11 + !J.mz(11, u, ~), (3.1) 

where u = (2K/T )y, then the problem can be solved 
by perturbation theory (with small parameter 
41T/ {3 ), subject to the condition 

p2 = (2K/crT) 2 ~4n/~. 

In this case the zeroth approximation is the system 
(2.2) without the right side; thus, the energy in the 
zeroth approximation is Yo= 2M2(a(3)1f2, i.e., this 
solution is degenerate in the values of T and k. 

The first-approximation system is 

- p2 ( 1 - k2s2} th 11 sech 11, 

L 11- = ~-1 ( hxs - hzc) + p2k2 sc sech 11, (3.2) 

and the first-approximation corrections ~mi are 
expressed by relations (2.5), but now c = en u and 
s = sn u. The boundary conditions are of the form 
(2.6). The fields hi in (3.2) were obtained from 
(1.9), in which the zeroth approximation solution 
was substituted. Using Fourier transformations in 
77 and in u, we obtain 

1 +"' +oo 
h;= 2n L exp{i(2p-1)nu/2K} ~ h;*eilTJdl, 

p=-00 

2:rt3 l:rt [ {2 
hx*= kK sech 2 (e-MchA~-1)A2 sech6 

- _z_ e-M sh As cosech e l , 
A -

* 2:rt3 ( 2p - 1) :rt l:rt [ l 
hy = kK aTA sech 2 . (e-M ch As- 1) A sech e 

- e-M sh As cosech e J, 
* . 2:rt3 Z:rt . [ l . l hz = - ! · kK sech- 2 e-A6 A sh As scch 6- eh AS cosech 8 J , 

6 = (2p -1):rtK' /2K, A2 = l2 + [(2p-1):rt/crT)2. (3.3) 

The boundary energy, taking the first appro xi
mation into account, is 

'Y = Vo + !J.yv + !J.ys, 

where 
+co +S +2K 

!J.yv = 86
1crK ~ dTJ j ds j du:Jev', 

-co -S -2K 

+co +2K 

!J.ys = s:K ~ d11 ~ dn.1t s'. (3.4) 

-co -2K 

Just as in Sec. 2, we can readily show that ~YV 
and ~YS do not depend on I-'+ and I-'-, and that 
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+oo +2K 

4aM2 M2 ~ ~ 6.yv = --KE-- dTJ du(nxc + nzs)sech T), 
aT2 8aK 

-oo -2K 

aM2W K-E 
6.ys = -----;;a;-~' 

where hx and hz are the fields (3.3) averaged 
over ~-

(3.5) 

From the condition for the energy minimum we 
obtain the system of equations 

a(6.yv + 11ys} I aT= o, a(6.yv + dys) I ak = 0, (3.6) 

from which we can obtain the period T and the 
modulus k as a function of the layer thickness 2d 
and the constants of the material; thus, the degen
eracy with respect to T and k is lifted in the first 
approximation of perturbation theory. 

The system (3.6) can be solved by computer 
methods. To obtain an idea of the character of the 
functions T(d) and k(d), the system was inves
tigated in two limiting cases: k ~ 1 and k ~ 0. 
When k ~ 1 (corresponding to the values o » oc. 
i.e., larger than the thickness of the crystal), we 
obtain 

( 4:rt a ''" 
T ~ o,166a''• 1 + (4:rt/~) ,1, + -(r ~') , 

k~1-8exp{-o.166( 1 +(!:/~)'i• +-~-w)}. (3.7) 

With decreasing crystal thickness, the length of 
the Bloch sections of the boundary decreases, and 
that of the Neel sections increases very slowly, so 
that the period decreases. An increase in {3' leads 
to an increase in the period, owing to the change in 
the relation between the energies of the Bloch and 
Neel sections (in analogy with the results of Sec. 2 ) . 
When {3' = 0, the value k = 0 (i.e., identical length 
of Bloch and Neel sections of the boundary) corre
sponds to o = o0 ; the period then reaches a mini
mum. When o < Oc, the choice of a solution in the 
form (3.1) becomes unsatisfactory, because this 
thickness region corresponds to a zeroth -approxi
mation of the form m~ ~ sn u and m~ ~ en u, i.e., 
when o < o0 a decrease in the crystal thickness 
leads to an increase in the lengths of the Neel sec
tions and a decrease in the lengths of the Bloch 
sections. When {3' -;e 0, the picture becomes greatly 
complicated, but when {3' > f3c the length of the 
Bloch sections exceeds that of the Neel sections 
at arbitrary crystal thickness. 

CONCLUSION 

The problem of the structure of the domain 
boundary was solved by perturbation theory with 
small parameter 471/ {3. This allows us to investi-

gate, with a minimum of model assumptions, the 
complete system of the differential equations 
(1. 7)-(1.9) describilig the structure of the bound
ary in a uniaxial ferromagnet. The results of this 
investigation differ radically from the results of 
all earlier investigations, since this is the first 
time that real boundary conditions were used on 
the crystal surface (1.8), with account taken of 
the surface anisotropy {3'. 

Since 4rr/{3 > 1 for most ferromagnets, it was 
reasonable to break down the results of the calcu
lations into two groups: a) results which admit of 
a formulation not critical to the choice of the cal
culation method, and consequently remain valid 
also when 4rr/{3 > 1; b) results valid only when 
4rr/ {3 « 1 (for example, for MnBi, for which {3 ~ 50 
etc.). Such an analysis of the results can be car
ried out approximately by using various models of 
the boundary structure, similar to those used in 
all papers on the domain boundary in a thin mag
netic film when {3/ 4rr < 1 (it is impossible to solve 
the problem (1. 7)- (1. 9) by perturbation theory 
with a small parameter {3/ 4rr, since the smallness 
of this parameter does not lead to a separation of 
the system (1. 7) and (1.9)). The analysis has dem
onstrated the following. 

The main result for a boundary which is longi
tudinally homogeneous (Fig. 3) remains approxi
mately valid also when 4rr/{3 > 1, if a= ({3/ a )112 

is replaced by the quantity a* ~ [( {3 + 2rr )/a ]112• 

Included in group (a) is also the following result: 
the Bloch boundary narrows towards the surface 
of the crystal if a{3' I d < 2rr, and broadens in the 
case of the opposite inequality; however, the mag
nitude of this effect and the details of the structure 
of the boundary at the surface of the crystal, which 
can be obtained from the solution of (2.4)-(2.6) 
(in particular, expression (2.12)), pertains to 
group (b). For a periodic boundary, the group (a) 
includes expressions (3. 7) for the period and for 
k when o » oc, and the general character of the 
variation of the periodic boundary as a function of 
the crystal thickness and of the value of {3'; group 
(b) pertains to the exact values of T and k for 
small film thicknesses, which can be obtained 
from the solution of the system (3.6), and the cor
rections to the shape of the boundary, which can 
be calculated from (3.2). 

The analysis has thus shown that all the results 
remain qualitatively (and some also quantitatively) 
correct also when the relation 4rr I {3 « 1 is not 
satisfied. 
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