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Account is taken of the fact that in a weakly inhomogeneous medium, for which the geomet­
rical optics approximation is valid, the number of resonant particles interacting with a longi­
tudinal wave may vary considerably with the distance. As a result, in some cases the wave 
absorption coefficient may oscillate in space in a certain region of the plasma. 

THE damping of a longitudinal wave in a weakly­
inhomogeneous plasma was already considered in 
a number of papers (see, for example, [ 1- 4J). The 
external field causing the presence of plasma in­
homogeneity was calculated in [5•6], where it was 
found that corrections to the real part of the wave 
vector k~( z ), connected with the account of the 
external field F, can be neglected in the geomet­
rical-optics approximation, while the correction 
to the imaginary part of k0 ( z ) is of the order of 
K~ (K0 is the geometrical-optics parameter, Ko 
= k02 dk0/dz ). Some decrease in the Landau damp­
ing is connected in this case with the fact that the 
accelerated electrons (moving in the external field 
F ) produce Cerenkov radiation of somewhat lower 
intensity than the electrons moving with constant 
velocity. 

The cited articles employed the geometrical­
optics method, which is valid when the properties 
of the medium change little over a distance on the 
order of the wavelength. No attention was paid so 
far in the calculation of the absorption coefficient 
of the wave, however, to the fact that the distribu­
tion function of the resonant particles f0 ( u ( z )) can 
change appreciably over distances of the order of 
the wavelength ( u = particle velocity). We show 
in this article that an account of this circumstance 
can lead to a radical change in the character of the 
damping of the longitudinal wave in a weakly in­
homogeneous plasma. In particular, it may turn 
out that in some region of the plasma there will 
propagate not a damped wave but a wave that grows 
in space. 

To solve this problem we shall follow an analy­
sis close to that used earlier [1]. We consider the 
one-dimensional case, in which the kinetic equation 
for the nonequilibrium part of the distribution func-

tion ( f = f0 + ~ ; ~ « f0 ) has, neglecting the exter­
nal field 1 >, the form 

. d<p Ee 8/o 
- HO<p + U dz + m 8u = O, 

where u is the velocity of the plasma electrons 
parallel to the electric field of the normal wave E, 
vl = KT!m the average thermal velocity of the 
plasma electrons, and N ( z ) the plasma electron 
concentration. The solution of (1) can be obtained 
in the elementary fashion. (it is assumed that - iw 
= - iw + v, v - 0 ) : 

z 

<p (z) = boeiwz/u exp (- u2j2vT2) s E (z) e-iwz/uN (z) dz; 
-oo·sign u 

bo = e I l'2:rtvt3m. 

Expanding E and N in Fourier integrals 

+oo 
E (z) = ·~ eikzEkdk, 

-oo 

+oo 
N(z)=~ Nkeih•dk 

(2) 

and recognizing that the particle concentration 
changes little, i.e., k' « k in the entire important 
interval, an assumption which must be made in 
order to employ later on the approximation of 
weak spatial dispersion, where 11- w~l w2 1 « 1, 
w~ = 47Te2N/m, as well as the geometrical-optics 
method (see alsoC5J ), we obtain 

+oo Ekeikz 
<p = b0N(z) exp (- u2/2vT2) 1 i(k _ w/u) dk. (3) 

l) As was already noted, inclusion of the corresponding 
term in the kinetic equation yields a correction['] for Im k0 ~ x~. 
We neglect corrections of this order in what follows. 
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Using Maxwell's equation 
+co 

- iwE + 4nj = 0, j = e ~ uq> du, 
-co 

we obtain in the usual manner 

E= woZ(z) f'{-il'n~w(~)-i}E"eikZdk, 
Vt2 )'2kvt y2kvt k2 

-oo (4) 

where, for example, when k > 0 and w > 0, 

2' X 

Wfx)= e-x'-+- ~-e-x'~ e1'dt. 
l'n o 

In the case of weak spatial dispersion, when 
w/km Vt » 1 and km = 21f/A.m ( A.m is the shortest 
wavelength of the radiation), Eq. (4) transforms to 

which we must introduce a term corresponding 
to the specified extraneous current 

I=- (4niw3 I 3vt2Wo2)jo6(z). 

In view of the fact that the integral terms on the 
right side of (5) are small, we make use of the 
perturbation method, i.e., we seek a solution of 
(5) with the indicated extraneous current in the 
form E = Eo + E1, where E1 is of the order of 
the right side of Eq. (5). In the zeroth approxi­
mation the field E satisfies the equation 

d2Eo ko2 
-d 2 +-;;-Eo= Bi:J(z), ko2 = Zt = a1 - az, 

Zt a· 

(7) 

and we should have E0 - 0 as z 1-- oo, whereas 
only an outgoing wave should exist when z1 - + oo 

(more accurately, as soon as z 1/a213 » 1). 
Under the foregoing assumptions, we can write 

down a solution of (7) in elementary fashion, with 
the aid of Airy functions [T] and in the geometrical 
optics approximation, i.e., when a= z 1/a213 » 1 

w' ( wo2 ) ko2(z) = -3 2 2 1--2- . 
Vt Wo W 

(5) Eo= -B'rr'i•eiv when Zt > 0; 

It is easy to see that Eq. (5) is similar to the equa­
tion for the field of the longitudinal wave of a homo­
geneous plasma placed in an inhomogeneous dielec­
tric [see formula (1) of [1]]. 

For the balance of the analysis we must specify 
the form of the function k~(z ). In this paper we 
shall deal with the case when the properties of the 
medium vary linearly, i.e., 

(6) 

where a > 0 and a 1 > 0 are constants. This case 
is important also because the analysis presented 
below, in the geometrical-optics approximation, 
can be used with some refinement for an arbitrary 
dependence of k~ on z, provided the function k~ ( z ) 
has one simple zero. We note also that, as already 
mentioned, Eq. (5) is valid only for those Fourier 
components of the field Ek for which k « wlvt 
(the higher Fourier components of the field E at­
tenuate rapidly). Therefore, the integration with 
respect to dk in (5) must be limited to k = km 
« wlvt where necessary. As wlvt- oo , km can 
also be arbitrarily large. 

To explain the singularities that occur here, we 
solve the following idealized problem: Let an ex­
traneous current j = j 0o(z) e-iwt be specified in 
the plane z = 0 and let it excite a longitudinal 
field described by Eq. (5), in the right side of 

Eo ~ 0 when Zt < 0, 

B' = Ba'"v(O), v = 2lga''' + n I 4. (8) 

Here v ( 0) = 0.63 is the value of the Airy function 
v(t)att=o[TJ. 

Using (8) we can readily obtain, for example by 
the saddle point method with a- 0, also an ex­
pression for the Fourier component of the field 
Eok 

B'i 
Eon = - -- eik'l3a. k < 0. l"n a'f, , 

(9) 

We then have for the determination of E1 the equa­
tion 

d2Et ko2Et = _ 2 B'J" 
d 2+ 2 !l ' Zt a 

(10) 

where E1 - 0 when z1 « -1 and E =Eo+ E1 
- A0 ( eiY -peiY) ~ Ao exp (iy- p) when z 1 » 1; 
A0 = - B' I a 114, and p ( z1 ) is some real function of 
p«l. 

As already noted, in the case of a linear depen­
dence of the wave vector on the coordinate (6), geo­
metrical optics is valid provided 
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(11) 

Using this circumstance, we can calculate the in­
tegral (10) by one of the asymptotic methods. We 
must exercise certain caution here, since the ar­
gument of the exponent in the integrand of (10) con­
tains a second large parameter 71 = w2/vfv1> cor­
responding to the approximation of small spatial 
dispersion. 

We write the integral of (10) i.n the form 
(k = .;z;- 0 

J = 1 ~ [ Zt'l• J d6 
2 ,, '/ J exp ·-/{6) ta ' 

r:n: a 'Zt 0 a ., 

/(6) = -e/2£2 +i(-£+63 /3), (12) 

where E = (w2/vfz 1 )c~/z~l2 is a dimensionless pa­
rameter equal to the ratio of the two large param­
eters indicated above, E = 71/k. Thus, J depends 
essentially on the value of E. We shall calculate 
the integral J by the saddle point method. The 
presence of an essential singularity of the integrand 
of (12) at ~ = 0 is of no significance, for as !; - 0 
we have 

Therefore the integration in (12) can be carried 
out not from zero, but from some quantity 2> 

!; « a/z~/2 • As already indicated, the quantity 
k = ~.;z;- is bounded by the condition 7J » 1, i.e., 
k « wlvt. On the other hand, the presence of in­
finity in the upper limit of (12) is insignificant, for 
at large values of k the integrand function oscil­
lates rapidly. 

To determine the saddle points, we use the 
equation 

(13) 

This is a fifth-degree equation, which cannot be 
solved for an arbitrary value of the parameter E. 
However, we can easily find the roots of (13) if 
E » 1 or E « 1. 

Let us consider in greater detail the case E « 1. 
We see readily that the expression for the root of 
Eq. (13) with Re ~ > 0 can be sought in the form 

00 

6 = 1 + ~ane", 
n=l 

2)The integral (12) converges near ~ = 0 for values 
iarg ~~.:::; 77/4. 

(14) 

Substituting (14) in (13), we obtain recurrence re­
lations for all the coefficients an· If we confine 
ourselves to terms of order E2, then 

(15) 

When EO « 1, the value of o is equal to o1 
= w4a/ 4vtz 712• If the condition Eo1 « 1 is not sat­
isfied, then we have for o a somewhat more com­
plicated expression, in which the largest term, as 
before, is equal to o1. If o1 « 1, then 

a''• { [ 2 zt'/, :n: ]}( ih2 ) J = -- exp i. ----+- 1 + Uh-- e-tJ/2, 
2z714 3 a 4 2 , 

e~1. (17) 

If we disregard small terms of order o, then 
formula (17) corresponds to the results obtained 
by Silin and Rukhadze [3•4]. On the other hand, if 
the condition o1 « 1 is not satisfied, then a factor 
eio appears in (16), and its inclusion can lead to a 
radical change in the character of the damping of 
the wave in the plasma (see below). Let us dis­
cuss now the second limiting case, when the num­
ber of resonating particles N ~ e -7112 changes ap­
preciably over a distance on the order of the wave­
length A. = 2rr/f'Z;. , i.e., E » 1. In this case it is 
convenient to introduce in (12) a new variable 
~ = ~ 1i. Then the roots of (13) can be sought in 
the form 

n=O 

Using the obtained recurrence relations for the 
coefficients an, we have 

[ 
00 (-1)"3" J £1 = e''' 1 + ~ ____ 8--z(n+t)/5 

.....J 5"+1 ' 
· n=O 

(18) 

where, of course, E1/5 has five values. It is easy 
to show that the saddle point tm corresponds to 
the value arg E1/5 = 2rr/5. Since the integral (12) 
is a rapidly oscillation function in this case, we 
can confine ourselves only to its most rapidly os­
cillating part (see below). We therefore have 
from (18) 

Stn ~ e'lse2ni/5 _ tj5e-'lse-2:ri/5, E > 1, (19) 

and we put here and below E1/ 5 = I E1/ 5 j, and 

a'l• { z1'f, ( 5 )} J ~ - exp __ _ e'ise-4rr.i/5 + e'/,e2.~i/5 
l'10 e'hoz/1• a , 6 

a'l• { 5 ( w6 )''' = - exp e-4:ri/5. -~ 
l'10 e'hozt'l• 6 \ Vt6a2 
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(20) 

It follows from (19) that in the case E » 1, 
considered here the root of Eq. (13), determined 
by relation (19), corresponds approximately to a 
plane wave with a wave number 

k = Re k + i lm k, 

( 
(1)2 )''' 2Jt Rek =- --a sin--, 
v 2 5 ' t 

( w2 )''' 2n lmk = --a cos . 
Vt2 5 

It is important to note that J oscillates in 
space much more frequently than the normal 
wave, whose length is 

2n 
'A=~, 

f Zt 

The solution of Eq. (10) under the boundary 
conditions indicated above is written in the form 

Et = 2a.'hftB' [i<D(a)A +<D1 (a) 

Zt Z1 

X ~ <D(a)J*dzt- <D(a) ~ <Dt(a)J*dzt J, 
-00 00 

z, 

A = lim ~ <D (a) J*dz~, 
z 1~oo_00 

(21) 

where <I>(u) and <I> 1(u) are connected with the 
Airy functions v and u C7J by the formulas <I> ( u) 
= v(-u) and <I> 1(u) = u(-u). In particular, as 
z 1 - - oo we certainly have E 1 « E 0, for it can 
be readily shown, by using arguments similar to 
that leading to formula (16), that J is exponentially 
small as z 1-- oo, and 

<D(a) = 1/2lal-'1• exp (-2/31al'1'), 

<Dt (a) = I a 1-'1• exp (2/3 1 a l'lz) 

as a-+- -co. 

When z 1 - oo, using the asymptotic formulas 
for the Airy functions, we get 

The total field can be represented in the form 
(z 1 -oo) 

Zt 

= ~ kt(z)dzt. 

(22) 

(24) 

The lower limit of integration, equal to - oo , has 
been replaced in (24) by zero because the function 
<I> ( u) is exponentially small when z 1 < 0. 

As follows from (24), the character of the damp­
ing of the wave, determined by the behavior of the 
function J(z1 ), depends essentially on the vq.lue of 
E. If E « 1, we can readily separate by using for­
mula (16) the slowly varying part of k1 from the 
rapidly oscillating one. As a result we obtain for 
the slowly varying part of k1 the following expres­
sion (k1(z 1 ) = ak1(z)) 

k ( ) Yn w5 exp (- w2/2vt 2zt) 
"ts Z = ---~ COS 6, 

6Y2vt5 z12 
£~1. (25) 

When EO « 1 we have o = o1 = w4a/ 4vtzV2• 

On the other hand, if the indicated condition is 
not satisfied, then o has a much more compli­
cated form, and, as already noted, the largest term 
in o is still equal to o1• When o1 « 1, we obtain 
a formula which coincides with the corresponding 
formula given in the articles of Silin and Ru­
khadze [3 •4J. 

It follows from (25) that the wave damping, de­
termined by the integral 

z, 

\ kts dz, 
0 

is smaller than that obtained by an analysis that 
does not take into account the circumstance noted 
above. Moreover, it follows from (25) that in some 
region, where cos o < 0, the wave grows in space. 

In the case when E » 1, the expression for J 
is determined by formula (20) and, as already 
noted, J oscillates more rapidly than the normal 
wave, i.e., J executes many oscillations over a 
distance of the order of the wavelength A.. Because 
of this, the quantity k1 determined by (24), oscil­
lates more rapidly than the normal wave ( ?;2 

».fZ";/a), since 

-y Jt (1)5 

k 1 (z) ~ e"'+x,z, cos (~ 1 + ~zt) cosy, £ ~ 1, 
3 Y5 v,.5e'!tozt2 

5 ( w6 ) 'is 4n ( w2 \ 'h 2n 
Xt = -6 62 cos-5 , x2 = -.-,I cos-5 , 

Vt 0. I Vt"O. J 

4n 2n 
~~ = Xt tan -5-, ~2 = x2 tan 5 . (26) 

We note that in (26) we retained only the most 
rapidly oscillating terms [see (20)]. 

It follows from (24) that although there exist 
regions where the amplitude of the wave grows in 
space, the wave loses energy on the whole propa­
gation path, since 
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To clarify the meaning of the foregoing results, 
let us determine directly the interaction between 
Maxwell-distributed electrons of the inhomogeneous 
plasma with the field of a normal longitudinal wave 
of such a plasma. We assume as before that the 
properties of the plasma change in accordance 
with the linear law (6). We consider the one­
dimensional case, when the Fourier component Ew 
of the longitudinal field excited by the current j 
= euN213 o ( z - ut) is determined by the equation [1 J: 

~!"' + ko2E"' = !ltei"'zlu, 

k02 = Zt =· a1 + az, (27) 

and that the dependence of J..L1 on z can be ne­
glected ( l1-wVw 2 1 « 1, see above). 

If we assume that the field sources are located 
in a finite region of space, then the boundary con­
ditions of the problem are as follows: Ew is finite 
everywhere, and as z1- + oo the field Ew - ei'Y, 
i.e., Ew should contain only an outgoing wave as 
z1 -+oo. 

Using the foregoing boundary conditions, we ob­
tain the solution of (27) in a manner similar to that 
used for the preceding case. As a result, going 
over in the resultant expression for the field to the 
limit as z1- oo, we obtain the radiation field 

!11 lfni ['. ( Wilt ro3 )] . E"' =Eradw=-,-,-exp ~ ---- e•Y. 
z,->-OO a l'zt 1. . , au 3au3 

Calculating the work performed by the charge 
per unit time on the radiation field at the point z, 
we obtain 

dw E -i6lt I ieJ.l! l"n a'l•u -dt = - eu "'e t=(a,-z,)lau = - __:____; . ...._,..,. __ 
Zt'i• 

X exp [ i ( .U?. z 1 - ~ + v)] + c.c., z1-+ oo, (28) 
au 3au3 

If we now average (28) over the Maxwellian dis­
tribution 

N'l• ( u2 ) 
fo = (2:rt)'i'vt exp - 2vt2 

and introduce a new variable k = w/e, then 

dw 

dt 

(29) 

It is evident that for the slowly varying part, which 
can be readily separated when € « 1, formulas 
(25) and (29) satisfy a relation of the type of the 
Kirchoff theorem [see (16)]. When € » 1 the 
quantity dw(zd/dt is, like k1, a rapidly oscillat­
ing function ( t 2 » -IZ;/ a!) 

As can be seen from the foregoing, the pres­
ence of the effects considered above is connected 
with the circumstance that the number of particles 
which interact with the normal wave in the given 
section of the plasma can change appreciably over 
a distance on the order of the wavelength. Such a 
situation takes place, for example, for a Maxwell­
ian distribution in the case of weak spatial disper­
sion (u2 = w2/z1 » vf). It follows from (28) that 
the work performed by one charge on the normal 
wave behaves, as a function of z, in the following 
manner: dw/dt changes little in the region where 
u ::::l wl z f 2 ( z 0 ), and oscillates outside this region 
(when z is close to z0, the oscillation is slow, and 
when z is greatly different from z 0, dw/dt oscil­
lates rapidly). If the number of resonant particles 
changes appreciably with the distance, then the 
character of the interaction of the wave with the 
charges at the given point of the plasma is in­
fluenced much more strongly not by the charges 
for which u ::::l wl..fZi for this point of space z = z0, 

but by the charges for which the velocity u is of 
the order of the phase velocity of the wave 
(u ::::l w/zV2(z)) in neighboring sections (z ~ z 0 ), 

since there are many more such charges. How­
ever, in accordance with the statements made 
above with respect to formula (28), these charges 
give an oscillating radiation reaction dw/dt. If the 
number of the resonating particles Nr does not 
change strongly over one wavelength ( E: « 1 ), then 
these oscillations are slower ( dw/ dt ..... cos o). On 
the other hand, if Nr changes appreciably over one 
wavelength ( € » 1 ) , then dw I dt oscillates rapidly 
[see (20)]. This effect is absent only when o « 1. 

In conclusion we point out that the effects under 
consideration should take place also in the case of 
a weakly inhomogeneous magnetoactive plasma. 
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