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The cross sections for loss of K electrons by fast hydrogen-like ions of any element, due 
to encounters with hydrogen or helium atoms, is calculated in the nonrelativistic Born ap
proximation. Approximate expressions suitable for practical applications are obtained for 
the cross sections in limiting cases. For low-charge ions the Born approximation yields 
cross sections which are identical with those calculated in the free-collision approximation. 
The calculated cross sections can also be used to estimate the cross sections for electron 
loss from other shells. 

1. INTRODUCTION 

UNTIL recently the theoretical calculations of 
the cross section for the loss of an electron by a 
fast atomic particle colliding with the atoms of a 
medium, were made in a wide range of velocities 
only for three very simple cases: loss of an elec
tron by a hydrogen atom colliding with hydrogen [1] 

or helium [2] atoms, and loss of an electron by a 
singly-charged helium ion colliding with hydrogen 
atoms [aJ. For particles with arbitrary atomic 
number Z, the only published calculations pertain 
to the cross sections for the knock-out of K and L 
electrons by protons and a particles [4•5] for a 
relative colliding-particle velocity V < Zv0 (v0 

= e2/n = 2.19 x 108 em/sec), and for the electron 
loss in collisions between ions with velocity V 
> Zv0 and hydrogen and helium atoms, in the free
collision approximation [G J. These calculations did 
not give a sufficiently complete and correct picture 
of the effect of variation of V and Z on the elec
tron-loss cross sections. To calculate the general 
laws governing the variations of the cross sections, 
and to obtain handy approximate formulas for prac
tical calculations, we determine in the present 
paper, in the nonrelativistic Born approximation, 
the cross sections for the loss of a K electron by 
a hydrogen-like ion of an arbitrary element collid
ing with atoms of hydrogen or helium. 

According to the well known criteria [7 • 8 J , the 
Born approximation is valid for the calculation of 
the cross sections of inelastic collisions between 
ions of charge Z and nuclei of charge Zse, if 

Z ~ Zs and Ks < 1, where Ks = 2Zsv0 /V, i.e., 
only for fast collisions ( V > Zv0 ). For ions with 
Z » Zs, as shown by HennebergC4J, the Born ap
proximation can be used also for slow collisions 
( V < Zv 0 ). In this case the Born approximation is 
equivalent to the method of impact parameters with 
straight-line trajectories [9]. According to Smir
nov [10], the curvature of the trajectories can be 
neglected when 

V > Zvo(ZZclt / Mo) 'i• ~ (0.2- 0.4)Zvo 

(where M0 = MMs I ( M + Ms ) is the reduced mass 
of the system and J.l. is the electron mass). The 
available experimental data on the ionization of the 
K-shells of medium and heavy atoms by protons [tt] 
show that the Born approximation is in satisfactory 
agreement with experiment up to 

V;::: (0.1 - 0.2)Zv0• 

The possibility of using the Born approximation 
to calculate the K-electron loss cross sections in 
collisions between ions and neutral atoms calls for 
further analysis. It will be shown later that the re
gion of applicability of the Born approximation is 
in this case approximately the same as for the ioni
zation of particles by collision with atomic nuclei. 

2. GENERAL FORMULA FOR THE ELECTRON 
LOSS CROSS SECTIONS 

Using the known general formula for the cross 
sections for elastic collisions in the Born approxi
mation [12 ] and applying them to electron-loss phe-
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nomena, we obtain for the total cross section for 
the loss of an electron by an ion colliding with 
atoms of the medium the following expression: 

where V and V' are the velocities of the ion rela
tive to the atom of the medium before and after 
collision; ( mms IN Inns) is the matrix element of 
the transition of the ion and the atom of the medium 
from the initial states m and ms to the final states 
n and ns. The final states n of the ion, which 
enter in (1), belong to the continuous spectrum and 
can be characterized by the electron wave vector 
K relative to the nucleus of the ion when the dis
tance between them is large. For the atoms of the 
medium, the final state ns can be arbitrary, and, 
in particular, it may coincide with the initial state. 
In this connection, we integrate in (1) over all val
ues of K which are allowed by the energy and mo
mentum conservation laws, and some Sns over all 
possible final states ns of the atom of the medium, 
including integration over the states of the continu
ous spectrum. 

According to [t2] we have 

(mmsl N I nn8 ) 

=\X.m(r)Xn*(r)<pm (r8 )c:p* (r 8)UeiRQdRdrdr8 , (2) 
~ s n 8 

where R is the radius vector of the ion relative 
to the nucleus of the atom of the medium; r is the 
radius vector of the removed electron, drawn from 
the nucleus of the ion; r -the aggregate of the ra
dius vectors rsj of the atomic electrons relative 
to the nucleus of the atom of the medium; Xm ( r ) 
and Xn ( r) are the wave functions of the removed 
electron in the initial and final states, respectively; 
f/Jms<rs) and f/Jns<rs) are the electron wave func
tions of the atom of the medium in the initial and 
final state; T = M ( V'- V )/ti is the change in the 
wave vector of the ion as a result of the collision; 
U is the potential of the interaction of the ion with 
the atom of the medium. For a single-electron 
ion with a nuclear charge Ze, and for an atom of 
the medium with a nuclear charge Zse, we have 

IR-rJ 

If cp (rs) can be represented in the form of a 

product of wave functions of the individual atomic 
electrons cp ( rsj ) then, taking into account the or
thogonality of the wgve functions, we obtain after 
integrating (2) with respect to R 

zs 

+Zs6m 8 n 8 8(mn)- e(mn) ~,e8;(msns)]; (3) 
J 

e (mn) = ~ Xm(r)xn*(r) exp(iQr) dr, 

e(msns) = ~ <Jlms (rs;) <Jlns. (rs;) exp (iQrs;) drsj· (3a) 

For the electron-loss process m ~ n, therefore 
the first two terms in (3), corresponding to the 
scattering of the ion by the atom of the medium 
without a change in the state of the ion, do not 
make any contribution to the electron-loss cross 
section. 

Taking into account the relation between Q and 
the ion scattering angle 8 in the c.m.s. 

h2Q2 = M2 (V- V') 2 + 4MVV' sin2 (8 / 2) 

and combining terms corresponding to collisions 
which leave the atom of the medium in its initial 
state, we obtain for the total electron-loss cross 
section the following expression: 

Omax Kmax 

cr = 8nz~(~f ~ (1-F)2 dg3 ~ Je(mn)l2 dK 
Omin Kmin 

(4) 

2 Qmax dQ Kmax z8 

-j-8n(~) S~s ~ {j3 ~ je(mn)J2 ~Je(msns)/2 dK; 
Qmin Kmin J 

Zs 

F = Zs-1 ~e(msn8). (5) 

Here F is the atomic form factor. For hydrogen 
and helium atoms F = [1 + (Qa0/2Z:)2 }-2, where z:e is the effective charge of the nuclei (for hy
drogen atoms z~ = 1, for helium atoms z~ = 1.69 ), 
a0 = ti2/ IJ.92 is the atomic unit of length. 

The first term in formula (5), which we denote 
<Tel• is the electron-loss cross section for ion
atom collisions in which the medium remain in the 
initial state. These collisions correspond to elas
tic collis.ions between the electron in the ion and 
the atoms of the medium, and can be called pseudo
elastic. The second term in (5), henceforth denoted 
<Tine!. is the electron loss cross section in pseudo
inelastic collisions, i.e., in collisions which end in 
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excitation or ionization of the atoms of the medium 
(we leave out the value ns = ms in the summation 
of Slls over ns). 

Under the usually satisfied condition V- V' « V, 
we can replace M2 ( V- V' )2 in (4) by ( ~E/ V )2, 

where 

I is the binding energy of the lost electron in the 
initial state. ~Ens is the change in the energy of 
the atom of the medium as it goes over into the 
state ns. In this approximation we obtain for the 
integration limits in (5) 

Qmin =!lEI nV, Oma-c = 2MV I h. 

We shall show that the cross section for the 
electron loss is practically independent of Qmax• 
and we can therefore assume that Qmax = oo • The 
value of Kmin for hydrogen-like ions is zero, and 
Kmax is determined from the equation 

3. LOSS OF K ELECTRON IN PSEUDOELASTIC 
COLLISIONS 

The cross section for the loss of an electron in 
pseudoelastic collisions depends essentially on the 
quantity I €( mn) 12• For the case when the K elec
tron goes over into the continuous-spectrum state, 
this quantity was calculated by Bethe [ 13 ] and by 
Massey and Mohr[ 14 J in connection with the solu
tion of the problem of the ionization of a hydrogen
like ion by electrons or protons. As a result of 
these calculations, using exact nonrelativistic wave 
functions of an electron in the Coulomb field, we 
obtained after integrating over the angle variables 
Qk of the momentum space K: 

~ I e ( mn) 12 K2 d~-h dK = E;, q dk 
ll,_ 

256q2 ( q2 + 113 + 1l3kz) 
[ (q2- k2 + 1)2 +. 4k2)3(1- e-2n!k) 

[ 2 -1 2k J X exp - k tan qz _ k2 + 1 k dk, (6) 

where q = QniJ.LYe = Qa0IZ, k = K.ti/ve = Ka01Z, 
and v e = Zv 0 is the average orbital velocity of the 
K electron. 

After introducing the quantity v = V/ve = V/Zv0, 

we obtain for ael the expression 

The cross sections ael were calculated by for
mula (7) with values F = [ 1 + ( Zq/2Z~ )2 r 2 and 
4:,q from (6), for the loss of a K electron by 
hydrogen-like ions of different elements colliding 
with hydrogen atoms or helium atoms, using the 
M-20 computer of the Moscow University (see the 
Appendix). The results of the calculations are 
shown in Figs. la and b. We see from the figures 
that the values of ael for the loss of an electron 
by hydrogen atoms in hydrogen and helium, and by 
He+ ions in hydrogen, coincided with the results 
corresponding to the calculations of Bates and 
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FIG. 1. aetZ4 vs. v = V/Zv 0 : a- in hydrogen, b-in helium. 
The values of Z are marked on the curves. Dashed curves - re
sult of calculations from['-']. 
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Griffing [1], Boyd, Moiseiwitsch and Stewart [2], 

and Bates and Williams [a]. 

The upper curve of each figure pertains to the 
ions with large values of Z, for which F = 0. The 
values of <Tel given by these curves are therefore 
also the cross sections for the ionization of the 
hydrogen-like ions in collisions with unscreened 
nuclei, and coincide with the cross sections cal
culated earlier by Bates and Griffing [1] and 
Merzbacher and Stewart [SJ for the knocking out 
of a K electron by fast atomic nuclei. In the re
gion v < 1, these cross sections coincide within 
15% with the values of a given by the approximate 
formula of Henne berg [4]. 

The screening of the Coulomb field of the nuclei 
of the atoms of the medium by the atomic electrons, 
which is accounted for by the value of F, leads to a 
noticeable decrease in the electron-loss cross sec
tions if v > Zl 4Z;, when ( 1 -F )2 becomes appre
ciably smaller than unity for qmin = 11 2v. 1l It is 
seen from the figures that the role of the screening 
does not weaken with increasing velocity. In the re
gion v < Zl 4z;, the value of <Tel for collisions of 
the ion with the atoms of hydrogen and helium turns 
out to be the same as for collisions with the hydro
gen and helium nuclei, which have no electron shell. 

The dependence of <Tel on the ion velocity is de
termined by the general character of the function 
-=:k,q and by the range of q and k over which the 
integration in (7) is carried out in accordance with 
the laws of energy and momentum conservation. At 
fixed values of q, the value of Ek,q reaches a maxi
mum at k ~ % if q ;;;;. % and at k ~ q if q ~ 1, 
after which it decreases rapidly with further in
crease in k. Therefore, when the maximum is in
cluded in the integration region, the value of the 
integral 

depends little on the upper limit and is close to its 
limiting value Joo at kmax = 00 , namely, Joo 
= 0.28q2 when q « 1 and J 00 = 1 when q » 1. On 
the other hand, if the maximum of the integrand is 
outside the integration limits, then J « Joo. 

When v « 1, so that the maximum of Ek,q re
mains outside the integration region, the main con
tribution to <Tel is made by collisions with q ~ 1l2v 
» 1 and k ~ 0. In this case Ek,q = 256 q -a k and 

1 
cry= 45 219na02 (Zc/ZZ)2 v-s. (8) 

1lThe quantity (1 - Fi differs little from unity when 

q > 2Z~/Z, and is close to (Z 2 q2/2Z:2) 2 when q < Z~/Z. 

This expression coincides with the previously ob
tained[1•5] limiting formulas for the cross sections 
for K-electron knockout by atomic nuclei. The ap
proximate Henneberg formula with v « 1 leads to 
values which are % times larger than in (8). 

As the velocity v approaches unity and qmin 
approaches %. the dependence of Ek q on q in the 
region q ~ qmin and k ~ 0 becomes weaker, and 
the increase in the cross sections <Tel with increas
ing v slows down. In the region v ~ 1, when the 
limit of integration reaches the region of the maxi
mum of the function Ek,q' the values of <Tel are 
maximal. The change in the ion momentum tiQmin 
in remote ionizing collisions then constitutes about 
one -half the average momentum J.N e which must 
be transferred to the electron to detach it from the 
ion. 

In the region v :::::: 3, in a sufficiently broad inter
val of q ( q ~ 51 8v to q ~ 2v, corresponding to kmax 
~ % and kmax ~ q), the maxim urn of the function 
Ek,q lies in the integration region and consequently 

J ~ Joo. For values of q outside this interval we 
have J « Joo. We can therefore write in this case 
the following approximate expression for <Tel: 

h d f d 
x { ~ (1-F) 2 --{+0.,2J8 ~ (1-F)z...!}. (9) 

1 q 5/8v q 

The first term of this expression coincides with 
the cross section for electron loss in elastic colli
sions between the electrons and the atoms of the 
medium, in the free-collision approximation, in 
which the electron-loss cross section is assumed 
equal to the cross section for the scattering of a 
free electron of velocity v by an atom of the me
dium, with a momentum change tiQ > Zpv0 (i.e., 
q > 1 ). The second term corresponds to the so
called resonance effects, i.e., to cases when the 
electron is lost in remote collisions, with small 
change of momentum of the colliding particles 
(q < 1 ). 

Recognizing that when q > 2Z: I Z the quantity 
( 1- F )2 is close to unity, and when q < z; IZ it 
is close to 0, we get from (9) that for ions with Z 
> 2Z~ and v > 3, accurate to 10%, 

Gel= 4:n:ao2 (Zs I Z2v)2{1- (2v)-2 + 0.56ln A}, (10) 

where A is the smaller of the quantities 8vl5 or 
zlzz:. 

For ions with Z > zz;, as can be seen from 
(10), the screening of the Coulomb field of the nu
clei of the medium by the atomic electrons limits 
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the contribution of the resonance collisions to O"el 
when v > Z/2Z~. When Z < z;, the screening be
comes so appreciable that resonance effects can 
be completely neglected. In this case the Born ap
proximation leads to cross sections which coincide 
with those calculated in the free-collision approxi
mation. The corresponding expressions for O"el 
are given in our earlier paper[&]. 

4. LOSS OF K ELECTRON AND PSEUDOELASTIC 
COLLISIONS 

Calculation of the electron-loss cross sections 
in collisions accompanied by excitation of the atom 
of the medium is a more complicated problem than 
the calculation of O"el. for in this case it is neces
sary to calculate the probability of the electron 
loss as the atoms of the medium go over simulta
neously into each of the excited final states, and 
then it is necessary to sum these probabilities. If 
the summation were not limited by the energy and 
momentum conservation laws, and extended over 
all the excited states of the atom of the medium, 
then we would have in accordance with the sum 
rule 

Sn 8 'le(m 8n 9 ) 12 = 1-F2 (11) 

and consequently we could write for O"inel 

where kmax= [2qv-1-LlEns/I0Z2 ] 112 (10 =wV2 
is the electron binding energy in the ground state 
of the hydrogen atom ) , and qmin is determined 
from the equation kmax = 0. 

Actually, for each pair of values of k and q, 
the summation in (11) is limited only to those ex
cited states for which 

11En 8 ~ loZ2(2qv- 1- k2), 

It is obvious that if this inequality allows transi
tions to the levels of the continuous spectrum with 
.:lEns = Is + ti2K~ /2J1., where Is = u~Io is the bind
ing energy of the electron in the atoms of the me
dium (us= 1 for hydrogen and Us= 1.35 for he
lium) and Ks is the wave number of the electron 
emitted from the atom of the medium, then the 
sum S~sl E(msns >1 2 includes also terms corre
sponding to transitions to arbitrary discrete levels 
with .:lEns < Is. In the case when the ~lectron goes 
over from hydrogen or helium atoms into the con
tinuous spectrum, the expression for I E ( msns ) 12 

coincides with the formula for I E ( mn ) 12 with the 
quantities q and k replaced respectively by qZ/z; 

and ksZ/z;, where ks = Ksa0 /Z. Therefore in the 
region q > Z~ /Z, where the plot of E2 vs. ks has a 
sharp maximum at ks R: q, the main contribution to 
S~ I dmsns )j2 is made by the terms corresponding s 
to the transitions of the atomic electron to the 
states of the continuous spectrum with ks "" q. 
Transitions to the states with ks > q can be ne
glected. Consequently, if the integration with re
spect to ks in S~s I E ( msns ) 12 extends to ks ~ q, 
relation (11) is in practice correct; cases when 
the upper limit of integration remains smaller 
than q can be neglected. 

In the region q < Z~/2Z we can disregard the 
contribution made to S~s I €( msns) 12 by terms cor
responding to transitions to the states with ks 
~ Zs/Z. Therefore, if the integration with respect 
to ks extends to ks > Z~/Z in this region of q, 
then relation (1) is also valid. In this connection, 
we can use for ainel at high velocities expression 
(12) with a modified upper limit for integration 
with respect to q. For the value of the average 
excitation energy of the atom of the medium .:lEns 
we have 

IJ.Ens = /oZ2(us2 I Z2 + ks2)' 

and for q ~ z; I Z it is necessary to assume that 
the mean value ks is equal to q. Nor will a large 
error result from assuming that ks = q when 
q < Z~ /2Z, since most collisions that end in a 
change of the state of the atom of the medium 
lead, at such small values of q, not to ionization 
of the atom, but to its excitation, with .:lEns <Is. 
The values of qmax and qmin are determined 
from the equation kmax = 0, so that when ks = q 
we get 

Relation (12) with ks = q is valid in the region 
v ~ [3(1 + u~/Z2 )] 112 , when kmax exceeds q in a 
sufficiently large interval of values of q, from 
qt to q2, such that q2 /qt ~ 3. In the region of 
small velocities, formula (12) with ks = q gives 
too low a value of O"inel• since no account is taken 
in this approximation of collisions with those k 
and q for which the maximum possible value is 
ks < q, i.e., the maximum possible value .:lEns 
< I0Z 2 (u~ /Z2 + q2 ). To calculate O"inel in the re
gion of v from v = 0.5 to v = [3(1 + u~/Z2 )] 112 

we therefore used formula (12) with the simplest 
type of expression for .:lEns: 

11En 8 = foZ2 (au 5 2 I Z2 + ~). 
If the coefficients a and {3 are properly chosen, 

formula (12) leads to values of ainel close to those 
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terest, for ainel « ael in this velocity region. 
This is connected with the fact that for v < 1 the 
values of the cross sections decrease rapidly with 
increasing values of ~E. which are larger for 
ainel than for ael· The results of calculations of 
ainel> obtained by numerical integration of (12) 
with the indicated values of ~Ens• are shown in 
Figs. 2a and b. 

at aJ u.s 10 lD JD 2 3 5 
V/Zv0 

z 
FIG. 2. Uine1Z4 vs. v = V/Zv0 : a- in hydrogen, b-in helium. ID-'~1::---11-J~-----r------'"'-

The values of Z are indicated next to the curves. Dashed curves 1i 
4 

- results of calculations from['-•]. 

obtained by others [l-a] as a result of more detailed 
calculations. It turned out that for a= 0. 7 and 
{3 = 1, the values of ainel obtained in this manner 
for the cases of H in He (u~/Z2 = 1.76) and He+ 
in H (u~/Z2 = 0.25) coincide within 10% with the 
more accurate calculations in this velocity interval, 
and in the case of electron loss by hydrogen atoms 
in hydrogen (u~/Z 2 = 1) they exceed the exact val
ues by "'50%. 

The calculation of ainel in the region v « 1, 
from the point of view of obtaining the total cross 
sections for the electron loss energy, i.s of no in-

2 

0.2 43 0.5 2 3 s 
v;zv, 

ID 31 JQ 

FIG. 3. aZ4 vs. v = V /Zv0 : a - in hydrogen, b - in helium. 
The values of Z are marked near the curves. Dashed curves -
results of calculations from['-•]; dash- dot curves - values of 
az• for collisions between ions and atomic nuclei. 



358 DMITRIEV, ZHILEiKIN, and NIKOLAEV 

Just as we obtain from (7) the limiting formula 
(9), we can obtain from (12) the following expres
sion for uinel in the region of high velocities 
(v ~ 3 ): 

Zs { ~11 dq a inel = 8:rtao2 --- ( 1 - F2) -
(Z2v)2 1 q3 

t d } + 0.28 ~ ( 1'- F2) qq ' 

(13) 

Recognizing that when q > z;;z the value of 
( 1- F 2 ) is close to unity, and when q « z; /Z it 
is close to ( Zq/ Z~ )2, i.e., it is much smaller 
than unity, we obtain from (13), for z;;z < 1, 

Zc { 1 } a inel = 4:rtao2 ( Z2v) 2 1 - --;)2 + 0.56 In B , (14) 

where B is equal to the smaller of the quantities 
Z/Z~ or 1.6 v ( 1 + 0.8 u~ /Z 2 ). The cross sections 
calculated with this formula for v ~ 3 differ from 
those given by (13) by not more than 10%. 

When Z~/Z > 1, the second integral in (13) 
practically vanishes, and the Born approximation 
leads to the same result as the free-collision ap
proximation. The expressions for uinel in this ap
proximation are also given in the earlier paper [G]. 

5. DISCUSSION 

The total cross sections for the loss of a K 
electron in hydrogen and in helium, obtained by 
summing Uel and O"inelo are shown in Figs. 3 
and 4. In the region V > Zv0, the contributions 
of uel and O"inel to the total cross section turn 
out to be comparable, and as the ion velocity 
changes the ratio of Uel to uinel remains prac
tically constant. In the region V < Zv 0, the con
tribution of uinel to the total cross section de
creases rapidly with decreasing velocity, as a 
result of which, for V < Zv0/2, the total electron
loss cross section is determined actually only by 
the value of u el· In this connection, the approxi
mate nature of the calculations of O"inel in the re
gion V ~ Zv0 affects little the obtained values of 
the cross sections. The greatest difference be
tween the cross sections calculated in the present 
paper and those obtained in [1- 3] is observed when 
V ,~ ( 1-2 )Zv0, and does not exceed 5-10%. 

As was already indicated in the introduction, in 
calculations of the cross sections for inelastic col
lisions between ions and nuclei with charge Zse, 
the Born approximation is valid for ions with Z 
;;;;. Zs when V > 2Zsv0 [T,BJ and for ions with Z 

» Zs when Z > Zv0[ ZZsJ.t/M0 J114 C10J. For the 
Born approximation to be applicable to the cross 
sections for electron loss by ions in collisions with 
neutral atoms, it is necessary in addition that the 
perturbation of the electron shell of the atoms in 
these collisions be small or, otherwise, that it 
exert no noticeable influence on the value of the 
cross section. This perturbation can be regarded 

b 

2 

Jtr'l 
aJ.~--~~--~~~~~--~~~~-----.M~~~ 

FIG. 4. Total cross section for the loss of a K-electron as a 
function of V: a - in hydrogen, b - in helium. The values of Z 
are indicated next to the curves. Experimental data: + - for H 
and He+ from[16]; x- for He+ from[ 18]; o- for He+ (in hydrogen) 
from[' 5 ]; ~ - for He+ (in helium) from[ 17]; o - for He+, Li +2 , 

Be +3 , Be +•, and N+o (in helium) from[ 19]; C - cross section for 
the ionization of hydrogen atoms by protons, from[ 10]. 
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as small when 2Zv0/V < 1, and therefore in the 
region V > 2Zv0 the Born approximation is valid 
for ions with Z < Z/2v0• When Z > V/2v0, the 
perturbation of the electron shell of the atoms of 
the medium can turn out to be sufficiently large 
and change appreciably the atomic form factor F, 
which enters in expressions (7) and (12) for D"el 
and D"inelo and the binding energy Is of the atomic 
electron, on which D"inel depends. With increasing 
Z, however, the influence of the values of F and 
Is on D"el and D"inel decreases, and therefore the 
Born approximation should give the correct value of 
the cross section for ions with sufficiently large Z. 

The weakened influence of Is on the cross sec
tion D"inel with increasing Z is connected with the 
rapid growth of the binding energy of the. electron 
belonging to the ion, and a resultant decrease in 
the role of Is in the energy balance of the process 
under consideration. From the calculations pre
sented it follows that whereas for ions with Z 
,.. ( 1-2 )Zs a change by a factor of 2 in the value 
of Is leads to a ,.. 30% change in D"inel in the re
gion of V from 2Zsvo to 2Zv0, and a change of 
10-20% in D"el + D"inelo in the case of ions with 
Z = 3Zs the same change in Is changes D"inel and 
D"el + D"inel by not more than 10% respectively, and 
for ions with Z 2: 4Zs these cross sections are 
hardly changed. 

The value of F ceases to exert a noticeable in
fluence on the cross sections D"el and D"inel at 
small values of the parameter vz:/z2v0, when a 
short-range collision with transfer of relatively 
large momentum Q is necessary for the ioniza
tion of the particle. According to Sees. 3 and 4, 
the cross section D"el is practically independent 
of F when Z > ( 4Z ~V /v 0 ) 1/ 2, and the same holds 
for D"inel when Z > (2Z~V/v0 ) 11 2 • 

Thus, in the region V > 2Zsv0, the Born approx
imation should lead to correct ionization cross sec
tions in collisions with neutral atoms for ions with 
Z < Zs/Ks and Z > Zs(sz:/ZsKs) 112 > Zs(8/Ks) 112, 

where Ks = 2Zsv0/V < 1. We expect the actual 
cross section to differ from that calculated in the 
Born approximation only for ions for which 1/ Ks 
> Z/ Zs > ( 8/Ks ) 1/ 2• It is little likely, however, 
that these deviations would be large in such a nar
row region of values of Z. 

A comparison of the calculated results with the 
presently known experimental cross sections for 
the loss of a K electron by fast hydrogen-like ions 
is shown in Figs. 4a and b. It is seen from the 
figures that in the region V·2: 2Zsv0, when Ks ~ 1, 
geod agreement between the calculated and experi
mental cross sections is observed for all the ions, 
including the ions for which 1/Ks > Z/Zs > (8/Ks )1/2• 

For ions with Z,.. Zs (He+, Li+ 2 ), the experimen
tal cross sections are somewhat lower than the 
calculated ones when V < Zsv0• It must be noted 
that the cross sections for the ionization of hydro
gen atoms by protons in the region V,.. (0.1-0.3 )v0 

(see Fig. 4a), obtained by SmirnovC10] in the adia
batic approximation, are also lower than those cal
culated in the Born approximation. 

Even in the region of high velocities, the cross 
sections for K-electron loss are generally speak
ing greatly different from the values given by the 
well-known Bohr formula [BJ 

a= 4nao2 (Zs2 + Zs)Z-2 (vo / V) 2• (15) 

This formula corresponds to the free-collision ap
proximation without account of screening of the 
Coulomb field of the nuclei of the atoms of the 
medium by the atomic electrons. As can be seen 
from Figs. 3a and b, the Bohr formula is applicable 
in fact only to cases when the electron is lost by 
ions with Z "' 2Zs. Only when screening is taken 
into account for ions with Z "' Zs does the approx
imation of free collisions lead to cross sections 
which coincide to those calculated in the Born ap
proximation[&]. From Figs. 3a and b we see that 
at high electron binding energies the cross section 
for electron loss in collisions with atoms turned 
out to be larger than in collisions with the corre
sponding atomic nuclei. When the lost electrons 
have lower binding energies, the opposite relation 
is observed. 

We see from the foregoing calculation that the 
initial state of the lost electron influences the 
electron-loss cross section through the function 
e:~,q and through the region of values of q and k 
over which the integration is carried out. For the 
K electron the function e:2 is such that when V > v e 
(ve = Zv0 is the average orbital velocity of the 
electron in question) the main contribution to the 
cross section is made by collisions for which q 
"' k "' 1. For the L shell [21 J with v e = Zv of2, the 
function e:2 plotted against q = Qti/ J.I.V e and k 
= Kti/ J.I.V e has qualitatively the same form as for 
the K electron, and in the region q ,., k "' 1 the 
values of e:2 for the K and L electrons differ 
relatively little. In this connection, in the region 
V ~ ve the cross sections for the lDss of K and L 
electrons should be approximately the same for the 
same values of V and v e· 

Such an agreement between the cross sections 
is actually obtained [ 19•20] and is not limited to ions 
with only one electron in the K or L shell. Ac
cording to the experimental data, for positive 
atomic ions, at fixed values of V and u = ( 2I/ J.l. )112 

(where I is the electron binding energy), the cross 
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sections for the loss of an individual electron from 
the K and L shell are equal within 20% regardless 
of the number of electrons in the shell. 

Inasmuch as I enters in the equation for the in
tegration limit 

the cross section for electron loss should in gen
eral depend both on v and on u. For hydrogen
like ions u = v e, but for multi -electron ions the 
values of u and v e may not coincide. 

The agreement of the cross sections for the 
loss of an individual electron by different ions, 
at identical values of V and u, apparently proves 
that we can neglect the difference between v e and 
u when considering the ionization of positive ions. 

In connection with this equality of the cross 
sections for the loss of an electron from different 
shells, the results of the calculation given above 
for the hydrogen-like ions can be used also in es
timates of the cross sections for the loss of elec
trons by other ions. 

The authors are grateful to 0. B. Firsov for 
valuable advice and remarks in a discussion of 
the present work. 

APPENDIX 

All the integrals considered in this paper were 
calculated by the method of optimal coefficients [22 ]. 
To this end, the initial region where the integrand 
function was defined mapped on a unit square, and 
the integral was calculated in accordance with the 
following quadrature formula: 

1 1 f N k 
~~f(x,y)dxdy=N~f[-r( ; 1

), 

0 0 k=1 . 

where T(x) and T(y) are functions which realize 
the periodization of the integrand, N the number 
of integration points, a 1 and a2 the optimal coeffi
cients in modulo N, and R the integration error. 
In the two -dimensional case we can replace the 
numbers N, at> and a2 by ~n· 1, and ~n-1• where 
~i is the i-th member of the Fibonacci number 
sequence; then, if T( x) and T( y) realize full 
periodization, the error of the approximate inte
gration is equal to 

R = O(ln~n/~na). 

Starting from the properties of the given inte
grands, the integration was carried out over 2,584 
points ( ~n = 2584) with fourth-order periodization 

(a = 4). As a result of such a choice of par am
eters, the average relative error in the calcula
tion of the integrals was 10-5. 
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