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A brief survey of the foundations of the renormalization-group method is given. The general 
solutions of the functional equations derived by Ovsyannikov are written out. They are used as 
the basis for a study of the problem of finding the high-energy asymptotic behavior of the 
scattering amplitude f. If the mass variable drops out at high energies, then for a fixed scat­
tering angle f is a function of one argument, and for fixed momentum transfer it is a function 
of two arguments. In the former case the renormalization-group method gives improved 
asymptotic properties as compared with ordinary perturbation theory, and in the latter case 
it does not. The sum of the main logarithmic terms in the symmetric charged pion theory is 
found. A special hypothesis is formulated which leads to asymptotic behavior of a quasi-Regge 
type for both the elastic and the inelastic amplitudes. 

UP to the present time the ultraviolet asymptotic 
behavior of Green's functions is still one of the 
most important unsolved problems of quantum field 
theory. Some years ago this problem attracted at­
tention in connection with the well known paradox 
of the "zero charge" or the "ghost pole" in quan­
tum electrodynamics. Owing to the increase of 
energies in accelerators it is taking on more and 
more actual experimental interest. Indeed, in this 
connection a new approach to the problem has been 
developed in recent years, based on the study of 
the analytic properties of scattering amplitudes in 
the complex plane of the angular momentum. Still, 
owing to the lack of sufficiently complete results 
from this approach, the attention of researchers is 
from time to time attracted to the more traditional 
methods, including the renormalization-group 
method (RGM). A number of papers of this kind 
have appeared recently. [1-TJ 

Along with interesting new results, some of these 
papers contain arguments which are not clearly 
enough stated and lead to conclusions which are 
not always correct. Therefore we think it timely 
to publish this paper, which contains both a concise 
survey of the basic points of the RGM and a de­
tailed analysis of the possibilities of the RGM in 
the problem of ultraviolet asymptotic behaviors. 

1. FOUNDATIONS OF THE RENORMALIZATION­
GROUP METHOD 

many-body system described by the Lagrangian 

(1.1) 

consisting of a term L2 which is quadratic in the 
field functions and their derivatives, and a term 
hL4 which is a form of the fourth degree, i.e., 

(1.2) 

where a is a constant. In this general form (1.1) 
can describe both nonrelativistic systems and rela­
tivistic systems, including nonlocal field theories. 

The usual method for studying the system (1.1) 
is as follows. The term L2 is the Lagrangian of the 
free field, and hL4 describes the interaction: 

Lo = L2, (1.3) 

One first studies the system with the interaction 
"turned off" (with h = 0), and quantizes it. The 
commutation relations [cp(1), cp(2)] = iG(1, 2) 
normalize the field function cp. Then one ''turns 
on" the interaction hL4 and uses elementary 
chronological pairings (Tcp(1)cp(2))0 = iD(1, 2) to 
calculate by perturbation theory (PT) the funda­
mental physical quantities M (matrix elements and 
Green's functions) in the form of expansions in 
powers of h. 

It is clear, however, that the separation (1.3) is 
not unique. For example, it can be replaced by the 
following: 

L = Lo' + L;nt', Lo' = z2-1L2, 

L;nt' = (1 - z2-:-1)~ + hL4, (1.4) The logical basis of the RGM can be expounded 
very simply. Let us consider, for example, a where z2 is a positive real number. In (1.4) we have 
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"transferred" part of the free Lagrangian L 0 of 
(1.3) into the interaction. Terms of this type 
usually get introduced into Lint as renormaliza­
tion counterterms. It is known that their effect is 
a renormalization of the fields, the pairings, and, 
in the final analysis, of the complete Green's func­
tions. 

In fact, we must now carry out the quantization 
of the free field L0. From (1.2) we see that now it 
is not the <p that gets normalized, but <p 1 = z21/ 2cp; 
that is, [<p 1 (1), <p 1 (2)] = iG(1, 2). When we change 
from <p to <p 1 in Lint and introduce a new coupling 
constant h 1 , we get 

L;nt' = (zz- 1)Lz(cp') + h'z,L,(cp1 ), (1.5) 

We note that when we replace (1.3) by (1.5) the 
single-particle and four-vertex Green's functions 

i 
D = 8; <TcpcpS)o, 1 < 64S ) r = ihSo bcp6cp6cp6cp . o (1. 7) 

are changed in the following way ( cf. [ 8]): 

D-+ D = Zz-1(. •• 'z,zz-2h')' r-+ r = z,r ( ... 'z,zz-2h'). 

With the condition (1.6) the functions D and r 
again describe a theory with the coupling constant 
h = h 1 z 4z22• It is clear that the simultaneous trans­
formation of the coupling constant and the Green's 
functions 

D( ... , z2 = 1,h)-+D( ... , z2,z,h1 ) 

= z2- 1D ( ... , Zz = 1, zz-2z,h1), 

f ( ... , Zz = 1, h) -+ f ( ... , Z2, z,h1 ) 

(1.8) 

leads to a situation which is physically equivalent 
to the original one. This is natural, since observa­
ble quantities are defined by the physical proper­
ties of the system as a whole [which are fixed by 
the complete Lagrangian (1.1) and cannot depend on 
the way L is broken up into L0 and Lintl· There­
fore the Lagrangians Lint of (1.3) and (1.5) with 
the condition (1.6) indeed lead to physically equiva­
lent results. This property is called renormaliza­
tion invariance, and the corresponding group of 
continuous transformations of the Green's functions 
is called the renormalization group. 

The formulas (1.8) reflect a peculiar self-sim­
ilar property of the Green's functions.C 9J They are 
consequences of dimensional relations and do not 
carry any dynamical information. The formulas 
(1.8) are valid, for example, for the problem of an 

electron gas with the Coulomb interaction, [to] for 
the Thirring two-dimensional fermion model, [tt] 
for a pion field with interaction by fours, [ 8] and so 
on. Problems with three-vertex interactions, for 
example the quantum electrodynamics of electrons 
or mesons, lead to an obvious modification of (1.8). 
For definiteness we shall deal here with the prob­
lem of relativistic interacting bosons, i.e., the 
problem of pion-pion interaction. 

The pion-pion interaction is a representative of 
the class of logarithmic theories, i.e., theories in 
which the basic ultraviolet asymptotic forms of the 
PT are logarithmic, and so also are the corre­
sponding divergences. A well known property of 
such theories is the multiplicative arbitrariness in 
the Green's functions, of the type (1.8), which in 
the momentum representation is connected with the 
subtraction procedure, i.e., with the possibility of 
normalization. Thus for the propagator of a meson 
with mass m 

d(k2 ) 
D(k) = = (2n)-4 I eikxfl(x) dx 

m2- k2 .l 

we can set 

d = 1 for k2 = 'A2 < 4m2• 

We can now write the function d as a function of 
dimensionless arguments, d(k2/A.2, m 2/A.2, h). The 
normalization condition will be 

d(1, y; h) = 1. (1.9) 

It can be seen that we have brought the arbitrary 
multiplicative factor z2 into the argument of the 
function d through the normalization momentum A.. 
The values of A. 2 are limited by the requirement 
that d be real, which is due to the fact that the con­
stant z2 is real. 

Making the analogous argument with the four­
vertex function r, taken in the momentum repre­
sentation, we put it in the form r(xt, . · ·, Xs; y; h), 
where, for example, 

X;=p;2jJ..2 (1~i~4), X 5 =CJ=s/'A2, 

X6 = 't = t /f.}; s = (Pi+ P2)2, t = (Pi+ Ps) 2, 

~Pi= 0, 

and we can take 

r(1, 1, 1, 1, 1, 1, y; h) = 1. (1.10) 

By means of known arguments [ 8] the formulas 
(1.8)-(1.10) are converted into functional equations 

Px = p (x, y; h) = p (xI£, y I£; Ps); 

d(x,y; h)= d(xl£, yl£; Ps)d(£,y; h); 

(1.11) 

(1.12) 

r(x~, ... ,x6,Y; h)=v(s,Y; h)r(xil£, ... ,x61'S, yl£; r6), 

y(x,y;h) =f(x, ... ,x,y;h}. (1.13) 
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In a precisely similar way we can write func­
tional equations for any Green's function 
G({xJ..t}, y; h) (where xJ..t = PiP/11.2, y = m2jf1.2): 

{ } G(s, {x;}, y; h) .c({x~}. _Y_., p·.) 
G;(x~,y;h)= s 

G(1, {x;/s}, Yls; p;) . s s 

(1.14) 

(where J..t = 1, 2, 3, ... , i = 2, 3, ... ), or, what is 
the same thing, 

G({x~},y;h) = da(s,y;h)vB(s,y;h)G({x~'/S}, y/s; Po). 
(1.15) 

Here d(~, y; h) andy(~, y; h) are nothing other than 
the constants z2 and z 4 determined from (1.8), 
(1.12), and (1.13), and Px is the invariant charge, 
given by 

Px = p(x, y; h) = hd2 (x, y; h)y(x, y; h)~ hzb4-1• (1.16) 

Equations (1.11)-(1.15) are the functional equa­
tions of the RG. We can also get from them differ­
ential equations which are useful in a number of 
cases, 

fJp ( x, y; h > f) ( y ) I _ r y ) 
f) l , = -fj-t P S, ~; Px = P \ ~; Px , (1.1 7) 

nx \:> x 6=1 x 

?lnG({x~}, y; h) _ fJ c( 
fJlnx1 - ~ln s, {X;} y 

~·~ 

-({X;} y ) = G ~ , x;_- ; Ph, . (1.18) 

Integrating Eq. (1.18), we get 
x, 

ln G( {x~}, y; h) = ~ duG ({l2}, !!_; PJ . 
G(x1 = x0, {xi}, y; h) u u u 1 

Xo 

(1.19) 

The one-argument function y(x, y; h) is defined 
by fixing relations between the arguments x1, ... , 
x6 in r. These connections must be fixed so that 
the function r (x, y; h) will be real. In the case in 
which all of the momenta are on the mass shell, 
this corresponds to points that lie inside a small 
triangle in the Mandelstam plane. In particular, 
the choices that correspond to the usual charge 
normalizations in meson theory are 

or 

X1 = ... = x, = x, X5 = 4y + 4/3(x- y), 

X6 = "/3(X- y) 

X 1 = ... = X 4 = X, X5 = X 6 = "/3x. 

For I xi » y the functions defined in this way coin­
cide with each other in the main logarithmic ap­
proximation of PT. This sort of choice of the 
connections between the variables is conditioned 

by the fact that by its definition the invariant 
charge is a real quantity. 

It follows from the arguments in Sec. 26 of[B] 
that for arbitrary x < y and in each order of PT the 
invariant charge so defined is a real quantity. This 
fact is in obvious agreement with the analyticity 
properties of the invariant charge, which are con­
sidered in the Appendix. 

We note that in a recent paper by Huang and 
Low[7] the authors use instead of Eq. (1.11) an 
equation [Eq. (9)-(10) in[ 7J) in which the last argu­
ment is not an invariant charge but the scattering 
amplitude itself-i.e., a complex function of many 
arguments. Therefore the arguments of Huang and 
Low[ 7] are equivalent to the introduction of com­
plex renormalization constants, that is, of non­
hermitian Lagrangians, which is in contradiction 
with the unitarity of the theory. 

From the arguments we have given it is clear 
that by this method the pion-nucleon interaction 
can be given a treatment which is no worse than that 
of the 7T7T interaction. This is also in contradiction 
with [ 7]. 

2. SOLUTION OF THE EQUATIONS 

In what follows we shall need general solutions 
of the equations of the RG. Such general solutions 
have been found by Ovsyannikov. [ 12] In particular, 
the general solution of the equations (1.11) for Px 
is implicitly defined by the equation 

f(y/x;px) =f(y;h). (2.1) 

Here f(y; h) is an arbitrary function of two argu­
ments which is invertible with respect to each of 
them. When we set ~ = u, x1 = y in (1.14), we find 
that the general solution of (1.14) must necessarily 
be of the form 

. _ R({x;}, y; h) ({ x;) y 1 
G({x~}, y, h)- R({ .; } I . ) Q -]·' -, Px'.J' 

X 11 X1 , Y X1, Px 1 \ X1 X1 

R( {x;}, y; h) = G(x1 = y; {x;}, y; h), 

(!( {x;}, y; h) = Q(i, {x;}, y; h). (2.2) 

Similarly, setting~ = x 1 in (1.15), we get 

G( {.x~}, y; h)= g(x1, y; h)Q( {x;/ x1}, y I x1; Px,), 

g(x, Y; h) = da(x, y; h)yB(x, y; h). (2 .3) 

It can easily be shown by direct verification that 
the equations (1.14) and (1.15) are sati.sfied for 
arbitrary functions Rand Q. In other words, the 
solution of Eqs. (1.14) and (1.15) is expressed in 
terms of two arbitrary functions of a large number 
of arguments. 

Analogous solutions can also be obtained in the 
many -charge theory (cf. [ 12]). For reference we 
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give the general solutions obtained in exactly the 
same way for the RG equations in the case in which 
the dependence on the argument y drops out (in the 
zero-mass theory): 

cp(Px) = xcp(t); (2.1a) 

R({xi};h) ({x;·} ) 
G({x11}; h)= R({-/ }· ) Q - ; Px, 

X, X! , Px; X! 

=g(x~,y;h)Q({::}; Px,). (2.2a) 

The solutions (2.1) -(2.3) contain all of the infor­
mation that is contained in the equations of the RG. 
The arbitrariness which is included in these solu­
tions is very great, and to get concrete results one 
must have additional information of a "dynamical" 
nature. This is indeed natural, since in the deriva­
tion of the RG equations essentially only dimensional 
considerations have been used, and not data on the 
dynamics of the system. 

We see that renormalization invariance dimin­
ishes the number of independent arguments by unity. 
For example, the scattering amplitude f(s/1..2, t/A. 2, 

m 2/t..2; h), which is a function of four arguments, is 
represented in the form of an arbitrary function of 
three arguments: 

( s t m2 ) ( s m2 ) I -:;y:• V 12 ; h = v 12 , ]!• h 

(2.4) 

(some of the arguments come in only through the 
invariant charge). Furthermore, it must be noted 
that for large s the dependence on the mass in PT 
often drops out. The number of arguments of Q is 
then diminished by another unit, andy becomes a 
function of p only. If we fix the scattering angle 
[ e = O(t/s) = const], we get a function of a single 
argument-the invariant charge. 

Contrary to the conclusion of Huang and Low 
[Eq. ( 21) of [7]], this function can be obtained from 
PT (its determination does not require information 
about complex values of the coupling constant). 

The dynamical information drawn from pertur­
bation theory is introduced in the right members of 
the Lie differential equations (1.17) -( 1.19), and the 
solution of these equations leads to renormalization­
invariant expressions. The expansions of these ex­
pressions correspond to the orders of PT that are 
used. 

The question arises: in what sort of cases will 
the resulting renormalization-invariant expression 
have better approximative properties than the 

. original PT ? 

It is well known that in the ultraviolet asymp­
totic forms of logarithmic theories the mass varia­
ble drops out from the one-particle Green's func­
tions. There then remains only the dependence on 
the invariant charge p. It is clear that in the region 
where Ps < h ln s we get an improvement of the ap­
proximative properties. As we have just now shown, 
there is an analogous situation for the scattering 
amplitude for a fixed scattering angle. In this case, 
using the PT expansion 

j(a,'t';h)= ~hnfn(lna, ln :), (2.5) 
n 

we get 

This formula, together with (2.4), indeed gives an 
effective improvement of the PT. If, on the other 
hand, t is fixed (diffraction scattering), then PT 
gives a double series for Q: 

Q = ~ Pcrn ~.An( ~2 )( ln+ r 
n=O k=O 

and owing to this there is no improvement of the 
approximative properties. [ 4, 7J 

We note that in summing the main logarithmic 
asymptotic forms we can make use of the fact that 
they break up into three one-argument terms: 

j( a, -r, y; h)~ ~ hn [an Inn a+ bn lnn 't' 
n 

+cnlnn(4y--r-cr)]. 

Owing to this the problem actually reduces to the 
finding of a one-argument function from its expan­
sion in a PT series. It is practically convenient 
(though not obligatory) to calculate the weight func­
tion of the corresponding one-dimensional spectral 
integral of the Mandelstam representation. 

In particular, for the symmetrical charged pion 
model 

(2. 7) 

we get 

A(s, t, u) = h + 7/(s) + 2/(t) + 2/(u), 

u =4m2 - t- s; (2.8) 

I(x) = f ;<x')dx'. ' 
4 X -X-~8 

h2 (X- y I''' 
p(x) = (1 +"11hlnx)2 --x-J · (2 ·9) 

Here A(s, t, u) is the well known structural com-
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ponent of the amplitude for 1f7f scattering. The 
other two, B and C, are obtained from A by means 
of crossing symmetry. 

3. THE QUASI-REGGE BEHAVIOR OF THE AM­
PLITUDES 

Recently many papers have appeared in which 
the asymptotic behaviors of elastic cross sections 
and amplitudes for lsi » ltl, m 2 were studied. 
There has been active discussion of a hypothesis 
according to which the amplitude in this region is 
of the Regge form: 

f(s, t) ~ ~(t)s'-'(tJ. (3.1) 

From the considerations developed above it is clear 
that the equations of the RG by themselves are not 
sufficient for getting this kind of information about 
the amplitudes, and other considerations must be 
introduced. In particular, by summing a definite 
class of diagrams (the ladder diagrams) in the h<p3 

theory Arbuzov, Logunov, Tavkhelidze, and 
Faustov[ 5J succeeded in deriving the asymptotic 
form (3.1) by means of the Lie equations (1.18). 
The legitimacy of applying the method of the RG to 
find the asymptotic form of the sum of such ladder 
diagrams is due to certain properties of these dia­
grams, which have been studied in papers by these 
and other authors. 

Let us examine what information about the am­
plitudes for elastic processes can be gotten from 
(3.1) for the RGM, and use them for the analysis of 
other processes. By using (1.11) we write the equa­
tion (1.18) for the amplitude 

ainf(u, ,;, y; h) = f (~. Y), 
a In (J (J (J I 

( u Y. '= (T Y. l P -- , ~ , P< ) - <Jl , -- , P< J • 
,,; T (J T 

According to (3.1) the asymptotic limit off can be 
of the Regge form only if the limit 

. -('t y ) . (T y \ (y '\ hm ! --- , - ; Pa = hm <jl - - , -~ ; P< 1 = a ~ ; P< =!=- 0 
G-+oo (J (J <J-+oo (J 't I 't l 

(3.2a) 

exists, or, when there is a finite "bare" charge [sJ 
H = p(u = 00 , y; h) if there exists the limit 

Iimf(-T, y; Pa)=a(Y, n)=1=-0. 
0--+00 a a .. T 

(3.2b) 

We now write the equation (1.18) for the dimen­
sionless amplitude for the scattering process in 
question (which is not necessarily elastic and is 
not necessarily on the mass shell, but is near it) 
in the form 

_alnG(u,l',aa;h) _ (T . ) 
aInu - v - u ' aa, Pa 

(3.3) 

Here t is one of the parameters of the type 
(pi+ P/· PI; s is the energy of the process; 
T = t/A.2, (J = sj,\2; 3a are parameters of the type 
t/m2, (Pa + p 13 )2 I (Py + Pu)2 which do not involve A. 
and are such that for s- oo, t = const they remain 
constant. 

We now assume that a relation of the type (3.2) 
is valid in field theory, independently of which am­
plitude it is applied to; that is, 

• 1 "t ) { Vo(aa; p,) hm v -, aa; Pa = =!=- 0. 
hoo <J Vo ( aa; H) 

(3.4) 

(It is obviously impossible to derive this sort of 
result directly in PT.) Then it follows from (3.3) 
that we have the respective formulas 

(3.5a) 

or 

(3.5b) 

corresponding to the two possibilities (3.2a), (3.2b). 
The relations (3.5) mean that the amplitudes for 

all processes behave in a quasi-Regge manner. 
Special cases of (3.5) are the well known results 
of Ter-Martirosyan [ 13 ] on the asymptotic behavior 
of inelastic processes and those of Dremin and 
Chernavskii [ !4] on the amplitudes as functions of 
the virtuality. The present approach naturally 
gives less information than the "dynamical" 
analysis of the papers cited (we cannot fix the form 
of the function v 0), but it has the advantage of gen­
erality. 

In conclusion we are pleased to express our 
gratitude to I. Todorov for writing the Appendix. 
The writers also take great pleasure in stating that 
the initiative for this work is due to A. Logunov, 
owing to whose decisive action this research can 
finally be regarded as having reached a conclusion. 
One of us (I.G.) also expresses his unchanging 
gratitude to D. Stel'makh. 

APPENDIX 

ANALYTIC PROPERTIES OF INVARIANT CHARGES 
IN MESON THEORY 1 l 

We shall show that in any order of PT the func­
tion p (x, y; h) is analytic in the x plane with a cut 
for x > y. In doing so we use the results of[ 15-!8] 

*Written by I. Todorov. 
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on the majorization of Feynman diagrams. We 
shall also show that each of the factors in the right 
member of (1.22) (sic) is analytic in the x plane with 
cut as already indicated. For the function d(x) this 
follows from the Kllllen-Lehmann representation 
for the boson wave function (cf. e.g., [ 8J), which 
naturally is valid also in any order of PT. The cut 
for the function d begins at s =9m2, i.e., x = 9y. 
The first branch point on the real axis is a singu­
larity of the factor y(s). 

The contribution to the meson-meson scattering 
amplitude from an arbitrary Feynman diagram 
which contains no divergences is of the form 

1 1 

T(p 1, ... ,p,)= ~ ... ~<1(1-~av)P(a,p) 
0 0 \1 

X II dcrv[Q(a, p)+ie]-r, (A.1) 
\1 

where P(a, p) is a polynomial in the scalar prod­
ucts of the momenta Pi, r is a positive integer, and 

4 

Q(a, p) = ~A;(a)p;2 + ~ B;J(a) (p; + PJ) 2 

i=1 1EO;i<jE0;3 

(A.2) 

{m for meson lines 
mv = M for nucleon lines of the diagram. 

The coefficients Ai (a) and Bij (a) in the expan­
sion (A.2) are not uniquely determined, since there 
is a linear relation between the variables p~ and 

1 
(Pi+ P/: 

4 

2 ~ p;2 = ~. (p; + PJ) 2• 

i=t 1~i<j~3 

This ambiguity can be utilized to secure that all of 
the coefficients Ai (a) and Bi ·(a) be nonnegative 
(cf. [18· 19]). In the case of a aivergent diagram the 
partial derivatives with respect to some of the 
internal masses are given by converging integrals 
of the type (A.1) with these same properties of the 
coefficients A and B. Therefore the singularities 
of any Feynman diagram are in all cases deter­
mined by the zeroes of the function Q(a, p) of 
Eq. (A.2). 

It follows from (A.1) and (A.2) that taken as a 
function of y the contribution from an arbitrary 
diagram is of the form 

i 1 

V { s} = ~ ... ~ P {a, s) (I ( 1 - ~ av ) 
0 0 \1 

X II dav [ A (a) s - ~ avmv2 + ie rr' (A.3) 
\1 

where 

A(a) ~ 0. (A.4) 

Owing to (A.4), if 

Q(a, s) =A (a)s- ~a,·mv2 < 0 (A.5) 
v 

for some real value s 0 and for all a in the region 
of integration, then this inequality will also hold for 

s <so. 

Mestvirishvili and Todorov[17J have shown that 
all of the diagrams for scattering of a pseudoscalar 
meson by a meson are majorized by three diagrams 
of the type shown in the figure, with different num­
berings of the external momenta. Therefore for 
s > 0 (i.e., in the Euclidean region) the form Q 
satisfies 

Q(a, s) < 0 for s <4m2, (A.6) 

so that this inequality holds for diagrams of the 
type shown in the figure. 

According to what has been said, the inequality 
(A.6) remains valid for all real s < 4m2• The inte­
gral (A.3) is analytic also for Im s "'0. In fact, if 
A(a) "'0, then the denominator in the integral (A.3) 
cannot be zero, since it has a nonvanishing imagin­
ary part. If, on the other hand, A(a) = 0, then at 
this point Q(a, s) = Q(a, 0) < 0, and consequently 
the integral (A.3) again cannot have any singulari­
ties. Accordingly the analyticity of the invariant 
charge p (x, y; h) in the cut x plane has been demon­
strated. In particular, it follows from what we have 
proved that the function p is real for x < 4y. 
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