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Equations of quasilinear theory are derived by taking into account the finite time of electric 
and magnetic microfield correlation in the plasma. Cases of electrostatic oscillations and 
an electromagnetic wave moving along an external magnetic field are considered. Heating of 
the plasma by an external random field is investigated with the aid of the obtained equations. 

1. To construct a consistent theory of turbulent 
plas.ma, it is necessary to solve a system of non­
linear equations for the particles and for the field 
This is a difficult problem. It is therefore sensible 
to attempt to solve the problem semi -phenomeno­
logically, assuming that the correlation function 
for the Fourier components of the electric field is 
specified or experimentally determined. This can 
be justified by the fact that in solving a number of 
problems in nonlinear plasma theory, only the in­
tegral characteristics of the correlation function 
are important, such as the correlation time, and 
knowledge of the exact form of the correlation 
function is not essential. In the existing quasi­
linear theory [1J the correlation time is assumed 
infinite. 

The purpose of the present paper is to take 
account of the influence of the finite correlation 
time of the electric microfields within the frame­
work of the quasi-linear approximation. This ap­
proach to the investigation of a turbulent plasma 
is applicable for the case of a plasma situated in 
an external electric field with randomly varying 
parameters (amplitude, phase). It can be used ·to 
considerable degree also for self-consistent fields. 
It is essential here, of course, that the model 
representations from which the correlation func­
tion is determined, be in correspondence with the 
degree of employed nonlinear approximation. 
Thus, for example, in the present paper the non­
linearity of the oscillations is taken into account 
only by introducing the correlator of the ampli­
tudes of the electric-field Fourier components, 
and no other effects connected with the nonlinearity 
of the oscillations are taken into account. By way 
of one of the models of a turbulent plasma one can 
use the one proposed by Stix, [2] in which the plasma 
consists of alternating neighboring regions, where 
the phase has a specified value but varies ran-

domly on going from one region into another. 
The arbitrary phase jumps can occur also when 

the particles go out of resonance, in the case when 
the oscillators move in an inhomogeneous magnetic 
field. An interesting possibility of occurrence of 
stochastic behavior when electric fields act on a 
nonlinear oscillator was investigated by Chirikov 
and Zaslavski1.[3] In many cases the stochastic 
nature of the variation of the phase is connected 
with a strong nonlinearity, and an account of the 
considered effects signifies essentially departure 
outside the limits of the approximation of weakly­
turbulent plasma. The results obtained can there­
fore be only qualitative in character. 

2. Let us consider first the case of a circularly 
polarized electromagnetic wave, propagating along 
an external magnetic field. The initial system of 
equations consists of a kinetic equation without a 
collision integral and Maxwell's equations. As in 
the quasilinear theory, the distribution functions is 
conveniently represented in the form 

f(t, r, v) = fo(t, v) + j 1 (t, r, v}, (1) 

where f0 ( t, v) is a function that varies slowly in 
time and determines the homogeneous background, 
against which the oscillations develop; f1 ( t, r, v ) 
describes the vibrational process. 

The equation for f0 has the form which is usual 
for quasilinear theory (see, for example [1] ) : 

8fo e ( oft ) e ( 8ft ) e 8fo at-m E av -me [vH] av - mc[vHo] av = O. (2)* 

In this equation E and H are the electric and 
magnetic field of the oscillations, the angle brack­
ets denote averaging in space and in time, as well 
as over the ensemble of random values of the 
Fourier components of the electromagnetic field. 

*[vH] = v x H. 
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We expand f1, E, and H in a Fourier series: 

,1 ~ 
ft = -2 L.J /k (t, v) ei(kz-wht) + C. C. 

k 

E = 1 S E~t(t)ei(kz-wkt)+ C. c. 
2 k 

H=}~.Hk(t)ei(kz-wkt)+c. c. (3) 
k 

Hk is connected with Ek by the relation Hk 
RJ cwi( 1 ( k x Ek); Ek ( t) are the random amplitudes 
of the electric field, the correlator of which is of 
the form 

Ek(t)Ek*(t') = JEk(t) J2U(t- t'), U(-t) = U(t). (4) 

The superior bar denotes averaging over the en­
semble, and the process is assumed to be quasi­
stationary, that is, U ( t) varies much faster than 
1Ek(t)J 2• 

Substituting in (2) the expansion (3) and going 
over to polar coordinates in v-space with an axis 
along H0, we can write the equation for fo in the 
form 

(5) 

± 
Here Ek = E'iiEy are the amplitudes of a circu-
larly polarized wave, (} is the angle between v 1 
and the x axis; it is assumed that f0 does not de­
pend on B [see (8)]. 

fk ( t, v) is determined from the following 
equation: 

ajk± ajk± e - + i(kv - Wk)j,.± + WH--- -Ek±e'fiB at ' ae 2m 

[( 1 _ kvz) a to kv __]_ aj0 J _ 
X --+ -- -0. 

Wk av j_ Wk av, 

The solution of this equation is of the form 

fk±(t, v) = ~ In (0) exp[i(kvz- Wk + nwH) t +in e] 
1l 

t 

+ -~ e +iB ~ Ek±(t') exp [i (kvz- Wk + WH) (t'- t)] 
2m 0 

X [( 1 _ kvz) ajo + kv __]_ a to J dt', 
Wk av j_ Wk avz 

(6) 

ft,±(t = 0) = ~ fn(O)einB. (7) 
n 

Substituting fk from (7) in (5) and averaging, 
we obtain for f0 the following equation: 

X [(f-_k}!_z) afo+~Vj_ ~~o]} 
Wk av j_ Wk av, 

(8) 

where V ( w) is the Fourier transform of the func­
tion U ( t ): 

1 00 

V(w) = 2lt ~ U(t)e-iwt dt. (8') 
-oo 

It was assumed in the derivation of the equation 
that f0 ( t, v) and IE~ ( t) 12 are time-dependent 
functions which vary little over time intervals of 
the order of I kv - wk 'f wh l- 1 (vis the average 
velocity in the distribution f0 ). This condition is 
customary in the quasilinear theory. 

The equation for I EkJ2 can also be obtained by 
a method analogous to that used in quasilinear 
theory. Using Maxwell's equations, it is easy to 
obtain the following relation for the variation of 
the energy of the k-th harmonic of the electromag­
netic field: 

(9) 

In this formula the index a corresponds to differ­
ent plasma components (beam, thermal particles, 
etc.). Substituting ~a from (7) and averaging, we 
obtain for I Ek 12 the following equation: 

a I Ek± 12 2n2e2 -'----'-- = --
at m 

X W11.2 ~ i dv vj_[( 1 _ kvz) afoa. + kv.L aj0a. J 
k2c2 + w,_2 .L..J .l Wh av j_ - Wh avz a. 

(10) 

Equations (8) and (10), form, when V is known, 
a closed system for the determination of f? and 
I Ek 12 • From these equations we easily obtain the 
energy conservation law: 

~ i dvmv2 ta.+"" JEkJ2+JH,_j2 = t (11) 
~ .) 2 . o LJ 8 cons . 

a. k lt 

As can be seen from the system (8) and (10), the 
quasilinear approximation corresponds to U ( t ) 
= 1 [ V ( w ) = c5 ( w ) ] . If we denote by r the charac-
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teristic scale of the time correlation, that is, the 
interval over which U ( t) differs from zero (in 
the quasilinear approximation T = 00 ), then the 
function V ( w ) has a finite width of the order of 
T -t. Thus, an account of the finite nature of T 

leads to a broadening of the region of velocities in 
which the particles exchange energy effectively 
with the waves. 

It follows from this, in particular, that energy 
can be transferred from the random field to the 
nonresonant plasma particles for which 
kvz « w~wH1 l. In this case, retaining in the equa­
tion for f0 only the highest-order terms in the 
parameters 

we obtain 

The solution of this equation subject to the initial 
condition 

( m )'/, ( mvz) fo(t = 0, v)= No -- exp --, 
'2nTo 21o 

(13) 

is of the form 

( m \'/, 1 ( mv..L2 mvz2 ) 

fo(t, v) =No 2n) T ..LTo 1'~xp - 2T j_- 2To ' (14) 

where the transverse temperature T 1 ( t) is de­
fined by the relation 

1 Jtez t 
T..L=To+ 2;--~V(ffik+ffiH) ~ 1Ek±(t')l 2dt'. (15) 

m k o 

If the correlation function is chosen in the form 
U ( t ) = e -t/ T, then 

V(ffi)- 1 __ -r __ 
- J1 1 + (!)2,;2 ' 

and we obtain for T l in this case the following 
formula 

ez 't' 
T..L=To+-2 ~ 1 +( + ) 2 "\1Ek±(t')l2dt'. (16) 

m " ffik _ ulH 1'" 0 

It follows from (15) and (16) that the plasma 
electrons can be heated by the transverse elec­
tromagnetic field, if the correlation time is 
finite. The energy of the electromagnetic field 
goes over essentially into the transverse thermal 
energy of the plasma, and the increase in the 
longitudinal thermal energy occurs in the next 
higher order in the small parameter. We note that 

l)The acceleration of the resonant particles (kv2 = Wk ± 
wa) by an electromagnetic field was considered by Tsyto­
vich.[4] 

formula (16) has the same form as when the plasma 
is heated by an electromagnetic field with fixed 
phase in the presence of collisions (then T is the 
time between the collisions). The physical nature 
of this analogy is connected with the fact that in 
the case which we are considering the phase re­
lations between the field and the particle are 
violated as a result of random jumps in the field 
phase, whereas in the presence of collisions the 
phase relations are violated when the electrons 
collide with any scattering centers. 

The heating of the plasma is accompanied by 
damping of the electromagnetic field. For I Ekl 2 

we obtain from (10), under the condition 
kvz/ ( Wk ± WH) « 1, the following equation: 

8IEk±l 2 

at 
ffik2 1' 

+ ffioz k2c2+ffikz 1+(ffik±ffiH)2,;21Ek±12=0. 

Integrating (17), we get 

IE~<±(t) 12 = JEholze-zv•t, 

(17) 

(18) 

In deriving the initial system (8) and (10), we 
have assumed that within a time on the order of 
the correlation time T the value of I Ek 1 2 does 
not change appreciably. This calls for satisfaction 
of the condition 

ffio2 ffik2 
Vt = -( -- )2 k2 2 + 2 < 1. (19) ffik ± ffiH C ffik 

This condition is satisfied over a rather wide 
range of plasma and field parameters. 

Substituting (18) in (16), we obtain for the maxi­
mum temperature fort- 00 , when I Ekl 2 - 0, the 
following formula: 

1 
T..Lmax=To+8nN 2: (IE~<olz+IH~tolz). (20) 

0 k 

3. We now proceed to consider longitudinal 
waves in the absence of a magnetic field. In this 
case, the spectrum of the oscillations is assumed 
three dimensional. In analogy with (8) and (10), 
we can obtain the following equations for f0 and 
I Ekl 2 : . 

These equations describe, in particular, the heat­
ing of the plasma by longitudinal waves. 
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Assuming the spectrum of the longitudinal 
waves to be isotropic, we obtain in the highest 
order in k ·vI Wk the following relation for f0 : 

( m )'h ( mu2) 
fo =No \2nT exp - 2T ' 

where the change in the plasma temperature with 
time is determined by the formula 

2 2 t 
T = T0 +-e- 2; T ~ JEk(t') j2 dt'. (23) 

3m k 1 + wk2-r2 0 

In the next higher order in k · f/ Wk, a change 
takes place in the directional velocity of the 
plasma particles (acceleration): 

du; 1 1 fJ!o 
mdt= NoJdvmv;at 

(24) 

We note that a similar effect is possible also with 
transverse waves. 

The attenuation of the longitudinal waves, ac­
companying the plasma heating, is determined by 
the same formula (18) with 

T 
v = vl = wo2 -:--c---::--:: 

1 + Wk2-r2 

In this case ,} T :S 1 (Wk"" w0), in which connec­
tion all the results of this section are qualitative 
in character. 

Extension of the velocity region in which the 
particles exchange energy effectively with the 
random field can lead to stabilization of the two­
stream instability. This can occur in the case 
when k~vT ::::: 1 ( ~v is the width of the beam 

distribution function). Then, the k-harmonic, the 
phase velocity of which lies in the interval where 
of0/av > 0, will interact not only with the particles 
for which of0/ov > 0, that is, the particles which 
transfer energy to the field, but also with those 
for which of0/Bv < 0, that is, with particles which 
absorb field energy, and the role of the latter can 
turn out to be more important. Indeed, assuming 
for simplicity that V can be regarded as constant 
in an interval ~v ( V = V0 ), we obtain from (22) in 
one-dimensional case 

where Yb is the contribution of the beam to the 
increment of the plasma wave, and Nb is the 
density of the beam. We see that the instability is 
indeed stabilized. 
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