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The electron and ion recombination coefficient in a weakly ionized gas of homopolar mole
cules is computed. Losses of electron energy in rotational excitation of the molecules are 
taken into account. 

PIT AEVSKII [t] presented a general method of 
calculating the electron and ion recombination 
coefficients at sufficiently high pressures and not 
too high temperatures, when the recombination is 
due predominantly to triple collisions between the 
ion and electron with a third particle, such that 
the change in the electron momentum is large 
( I ~p I ~ I pI ) and the change in the electron 
energy E is rel$-tively small, so that the equili
brium of the electron coordinates is established 
much more rapidly than the equilibrium of their 
energies. The recombination process can then be 
regarded as diffusion of electrons in energy space 
in the direction E < 0, which in turn can be de
scribed by the Fokker-Planck equation. This 
method was used in [1] to calculate the recombina
tion coefficient of electrons in a monatomic gas, 
when the collisions of the electron with the atoms 
are elastic. 

In the case of recombination of electrons in a 
molecular gas, the electron colliding with the 
molecule can experience, besides elastic scatter
ing, also inelastic scattering with excitation of 
rotational transitions of the molecule. We confine 
ourselves to the case of diatomic or linear homo
polar molecules, the inelastic scattering of slow 
electrons from which was considered by Gerjuoy 
and Stein. [2] As shown in [2], the cross section for 
the rotational excitation of the molecule is much 
smaller than the elastic cross section, since it 
follows from the conservation law for the total 
momentum that an electron capable of producing 
a rotational transition should have a nonzero 
orbital angular momentum l either in the initial 
or in the final state, and at sufficiently low ener
gies an electron with l "" 0 passes far from the 
molecule and interacts little with it. (Upon colli
sion with a homopolar molecule the electron in
teracts essentially with its quadrupole moment, 

so that the interaction potential decreases like 
r-3.) 

The same considerations justify the use of the 
first Born approximation for the calculation of the 
cross section of rotational excitation1l. Since the 
electron loses to the excitation of the molecule an 
energy of approximately ~Erot ~ .j B® where B 
is the rotational quantum of the molecule, ® = kT, 
T is the temperature of the molecular gas, and k 
is Boltzmann's constant (we note that if E ~ ®, 

then when B « ® the quantity ~Erot « E), and 
since the average electron energy loss in elastic 
collision is ~Eez ~ 2mE/M « E, we have at suf
ficiently low electron energies 

Thus, when considering the recombination of 
electrons and ions in a molecular gas we can 
assume that the equilibrium of the electron co
ordinates is established essentially as a result of 
elastic collisions of the electrons with the mole
cules, and that the diffusion of the electrons in 
energy space is determined in the general case 
by both types of collisions. 

The general scheme developed by Pitaevskil [t] 

enables us to calculate the recombination coeffi
cient also in this case. We shall use formulas (4), 
(10), and (12) from m, which yield for the recom
bination coefficient a 

l)As pointed out by E. E. Nikitin, recent more accurate 
calculations)'·•] in which account was taken of the polariza
tion interaction of the electron with the molecule and of the 
distortion of the plane waves that describe the electron in the 
initial and final states, may differ noticeably from the results 
of Gerjuoy and Stein. However, this difference is significant 
only when E > 0.1 eV, corresponding to a temperature 
T > 1000°, whereas we are interested in lower temperatures. 
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a= [ (2nm8)%~ e-efe~]-1 , 
0 B(e) · 

where E = - E ( E is the electron energy in the 
field of the ion, E < 0 ), 

B(e) = 2}(e) (! (ile)2) 

( ( ... ) denotes averaging), 

(1) 

(2) 

The distribution function of the electrons in the 
field of the ion is of the form 

j(p,r,e)=A6(:~ -~+e). 
In the general case, taking into account both types 
of collisions between the electron and the mole
cule, we have 

The term in (3) responsible for the elastic colli
sions was calculated by Pitaevskil, and to calcu
late the term responsible for the inelastic colli
sions, we note that when an electron collides with 
a homopolar molecule in the J -th rotational state, 
the only molecular transitions possible are those 
in which the momentum J changes by ±2, so that 

( :t (Lle) 2inel > 
= nB2 (v[(4/ + 6) 2 a1 , J+2 + (4/- 2)2 a1 , 1- 2]). (4) 

Here n is the number of molecules per unit vol
ume, v the electron velocity relative to the mole
cule, and CTJ ,J±2 is the cross section of the cor
responding rotational transition. 

Recognizing that in collisions with the mole
cule the electron can be regarded as free, we 
obtain for aJ ,J±2[2J: 

8nQ2a02 [ , 2Bm ]'/, 
(JJ,J+2 = _1_5_ 1-7 (4/ + 6) 

(/ + 2) (/ + 1) 
(2/ + 3) (2/ + 1) ' 

8nQ2ao2 [ , 2Bm ]''• 
(JJ,J-2 = -1-5- 1 +y (4/- 2) 

/(/ -1) 
X 

(21 -1) (2/ + 1) 
(5) 

Here Q is the quadrupole moment of the molecule 
in units of ea~, where a0 is the Bohr radius. 

In (4) ( ... ) denotes averaging over the elec
tron and molecule distribution functions, i.e., 

11 B ~ { p2 e2 ) << ... >> = 2Av -.) e, ---+ 8 
:rr8 .2m r 

X fl3pd3r ~ e-BJ(J+t)/9 ( ••. ) • 

J=P 

Since we assume that the condition e » B is 
satisfied, the principal role in (6) is played by 

(6) 

J » 1, so that summation over J can be replaced 
by integration with respect to J. Further, the 
main contribution in (1) is made by the electron 
energies E ~ @, SO that 

Elm I p2 ,..., )'B I 8 ~ 1, 

and therefore we can approximately write for 

aJ,J±2 

As a result of averaging over J we then get 

<-f) 2. \ _ 32n 2 2 n 
a/~e) mel/ -15'"Q ao BE> m (p), 

~ ( p2 e2 ) 
(p) = A fl3rd3p · p6 - - - + e . 

2.m r 

Calculating the integral (8), we have for the 
mean square change in the electron energy per 
unit time 

(7) 

(8) 

(-~ (Lle) i!et) = 256 n3e6mQ3a02 nB ~ (1 + 0 ( 11 B)\ (9) \ ut 45 82 v e. J . 

Substituting (9) in (3) and (1) we obtain for the 
recombination coefficient a accurate to terms of 
order .../B/e: 

a= aocp(E>), (10) 

(11) 

where a 0 is the recombination coefficient calcu
lated in [t] with allowance for only elastic colli
sions of the electrons, and cp (e) is a certain 
universal function which takes into account the 
energy losses of the electron both by transfer of 
translational energy, and to rotational excitation 
of the molecules: 

cp(El) = {1- f(El) - J2(El)ef<6l Ei( -f(El)) }-1, 

2n Q2 a02 M B 
t<E>> = -f5--a;- m:-e · 

where O't is the total cross section for the elec
tron-molecule collision, and Ei is the exponential 
integral function. 

It follows from the formula that at sufficiently 
high temperatures when f( e) « 1, the recom
bination coefficient coincides with that obtained 
by Pitaevskil,[t] that is, the rotational excitation 
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of molecules does not influence appreciably the 
recombination coefficient. At sufficiently small 
®, such that f( ®) » 1, the two highest-order 
terms of the asymptotic expansion of the function 
cp (f) yield 

(13) 

The first term f/2 in (13) corresponds to in
clusion of only inelastic collisions between the 
electron and the molecule, and the recombination 
coefficient is in this case 

(14) 

Formula (14), apart from a numerical factor, 
coincides with the elementary Thomson formula[SJ 
where A is the average fraction of the energy loss 
by the electron in rotational transitions, which 
according to Gerjuoy and Stein [2] is equal to 

_ 64l'2n e6a1n 'A _16 Q2 2 B 
aT - - 81 ,1 o.•t 'A, - - n a0 -----:::::, 

m 'o ' 15 CJt e 
e=e. 

A numerical calculation of the function cp (f) 
shows that formula (13) is sufficiently accurate 
( ~ 5 per cent) even when f > 5, thus indicating 
the possibility of using it in a broad temperature 
interval. 

Formula (12) is valid if the following conditions 
are satisfied: 

(where a is the dimension of the molecule), mak
ing it possible to regard the electron as free when 
it collides with the molecule; 

2) 8~ (m/ M)''•(e2BQ2a02n)'l•, 

which insures a more rapid establishment of co
ordinate equilibrium than energy equilibrium 

3) e~B. 

In this case the decisive condition is 1) since 
conditions 2) and 3) are practically always satis
fied. 

In conclusion we note that the Pitaevskil 
method employed here can be extended also to 
other classes of molecules, for example those 
having a dipole moment and small vibrational 
quanta. 

We take the opportunity to express deep grati
tude to L. P. Pitaevskil for help with the work and 
also A. S. Kompaneets, G. K. Ivanov, and E. E. 
Nikitin for a discussion of the results. 
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