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A relativistic formula is derived for the small angle elastic scattering cross section of 
charged elementary particles, taking into account interference between nuclear and Cou­
lomb interactions. The optical theorem is established for the nuclear amplitude taking 
this interference into account. 

A formula for determining from experiment the 
real part of the nuclear elastic forward scattering 
amplitude of charged particles, taking account of 
the Coulomb phase of this amplitude, was first ob­
tained by Bethe [!] using nonrelativistic quantum 
mechanics of an extended particle. From the point 
of view of experiments on the scattering of high 
energy elementary particles, it is of interest to 
obtain the corresponding formula starting from 
relativistic quantum field theory. We shall define 
the nuclear scattering amplitude for charged par­
ticles and establish the optical theorem for it. 

In small angle elastic scattering of charged 
particles the main contributions to the amplitude 
come from diagrams 1 and 5 of the figure (the 
cross-hatched regions denote strong interactions), 
which correspond to nuclear and to Coulomb scat­
tering. We shall also include the radiative correc­
tions to these diagrams. With the presently at­
tainable experimental accuracy, it is sufficient to 
consider only corrections of order a= 1/137, al­
though the inclusion of higher order corrections at 
small angles presents no difficulties in principlePJ 

The figure shows some typical diagrams 2, 3, 4 
of radiative corrections to nuclear scattering. The 
contribution of diagrams like 4, corresponding to 
the exchange of a photon between real charged par­
ticles, contains infrared divergences. These dia­
grams correspond to the Coulomb contribution to 
the nuclear amplitude. Separating out explicitly 
the terms containing infrared divergences, we 
write the nuclear amplitude with the radiative 
corrections in the form 

(1) 

where the gauge- and Lorentz-invariant factor Ft.. 
contains all the infrared divergences and takes ac­
count of the Coulomb contribution to the nuclear 
amplitude: [J] 
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The summation goes over all charged particles at 
the start and end of the reaction; Zi and Pi are 
the sign of the charge and the 4-momentum of the 
particle; ai = 1 for outgoing and ai = - 1 for in­
coming particles; A. is a fictitious small photon 
mass. 

We shall call the quantity gn in (1) the nuclear 
amplitude. It corresponds to diagrams of the type 
1-3 and to the nondivergent parts of diagram 4, 
and differs from the purely nuclear amplitude 
(diagram 1) only by finite radiative corrections. 
It has the same general properties as the purely 
nuclear amplitude: it contains no divergences, is 
finite at zero scattering angle, is gauge invariant, 
has the same properties of crossing symmetry and 
(at least in low orders of perturbation theory) the 
same analytic properties. [2, 4] 

Let us consider the factor Ft.. for zero scatter­
ing angle, i.e., for t = (p1 -p3 )2 = 0. It is not diffi­
cult to see that 
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where VL is the lab velocity of the incident par­
ticle and p is the modulus of the 3 -dimensional 
momentum of the particle in the c.m.s. The quan­
tity 0 contains no infrared divergences, goes to 
zero at high energies, and can be dropped. 

Now consider diagrams for one- and two-photon 
exchange. Of their contributions it is sufficient to 
consider only the part which is most singular at 
small angles: 

gc ( 1 -iT] ln ')./ ) , 

where gc is the Coulomb amplitude. At small 
angles 

(4) 

(5) 
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where 8 is the scattering angle in the c.m.s. In (4) 
we have neglected terms of the form a 2( -t)-1/~ 
a 2 ln ( -t), and in (5) terms of order a( -t)-112 

and a, which come from the electromagnetic form 
factors of the particles in the one-photon diagram, 
but they can easily be included. 

Adding expressions (1) and (4) and taking out a 
common phase factor, we get the following expres­
sion for the differential scattering cross section 
in the c.m.s.: 

X (gnR + 2gniT] ln _2_), e. 
where gnR and gnr denote respectively the real 
and imaginary parts of the nuclear amplitude gn 
without spin change. In Bethe's formula [ 1] the 
factor 2 under the logarithm was replaced by e0 

= 1.06/pa, where a is the range of the nuclear 
interaction. 

We now establish the optical theorem for the 
nuclear amplitude gn. If we introduce a small 
photon mass A., the total forward scattering am­
plitude satisfies the usual unitarity condition 
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where W is the total energy in the c.m.s. and m 
is the number of identical particles in the final 
state f. 

We now separate out of both sides of (8) all 
terms which are infinite for A.- 0. Since the 
infrared divergences caused by the virtual and 

real photons cancel one another in the total cross 
section, infinite terms on the right of (8) arise 
only from the integration of the Coulomb ampli­
tude over the region of small (and also large, for 
identical particles) angles. Noting that the imagi­
nary part of the amplitude for two -photon ex­
change on the left of (8) cancels against the Cou­
lomb cross section on the right, we rewrite this 
equation in the form 

p ~ ~ 
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where a ( > emin) denotes the total cross section 
for the process in which the elastic scattering in 
the c.m.s. is taken into account at all angles 
greater than some minimum angle emin near the 
forward direction (and near the backward direc­
tion, in the case of identical particles), ac ( > emin) 
is the analogous cross section for Coulomb scatter­
ing, and 

(10) 

We see that the terms dependent on A. in (10) can­
cel one another, and we get the optical theorem for 
gn: 

The Coulomb cross section ac ( > emin) is known. 
For small emin 

<Jc(> 8min) = ---- + 0 -::;:c-- • 
~ 4nf)z ( 1 ) 
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Thus formula (11) contains only finite quantities 
and relates the real and imaginary parts of the nu­
clear forward scattering amplitude (without spin 
chan&:_e) to the observed experimental cross section 
a ( > 8min ). 

The optical theorem (11) is given to terms of 
order a. It is not difficult to include terms of or­
der a 2• To do this, in formulas (1) and (9) we must 
replace 1 +Fr.. by 1 +Fr..+ F~/2, gn( ()') by 
gn ( 8') (1 + Fr..), and instead of gcr... use 

As a result we get 
p ~ -

gnl = 4Jt[cr(> 8min)- <Jc(> 8min)] 

+ 2 ( gnR + gniT] ln _ 2 ) f) ln _2 . 
8min 8min 

(14) 
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